
Exponential Stability of Linear Systems under a
Class of Unbounded Perturbations

Safae El Alaoui, Mohamed Ouzahra

Abstract—In this work, we investigate the exponential stability
of a linear system described by ẋ(t) = Ax(t) − ρBx(t). Here,
A generates a semigroup S(t) on a Hilbert space, the operator B
is supposed to be of Desch-Schappacher type, which makes the
investigation more interesting in many applications. The case of
Miyadera-Voigt perturbations is also considered. Sufficient conditions
are formulated in terms of admissibility and observability inequalities
and the approach is based on some energy estimates. Finally,
the obtained results are applied to prove the uniform exponential
stabilization of bilinear partial differential equations.
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I. INTRODUCTION

IN this work, we deal with the following perturbed linear

system:

ẋ(t) = Ax(t)− ρBx(t), t > 0, x(0) = x0. (1)

Here, X is a Hilbert space called the state space with inner

product 〈·, ·〉 and corresponding norm ‖.‖X . The system’s

operator A is the infinitesimal generator of a C0−semigroup

S(t) on X , and the control operator B is an unbounded linear

operator of X . In several practical situations the modeling

gives rise to systems of the form (1) with a perturbation

operator B which is of Miyadera-Voigt or Desch-Schappacher

type. This is the case for instance when the control acts in a

multiplicative way through the boundary or at a point of the

system’s geometrical domain and also in many situations of

internal control of partial differential equations (see e.g. [4],

[10], [11]). In general, due to the unbounded aspect of the

operator B, the solution of (1) does not exist with values

in X. Thus, in order to confront this difficulty, the concept

of admissibility is needed, which requires the introduction of

interpolating and extrapolating spaces of the state space X .

In this work we will investigate the problem of exponential

stability of system (1). This consists of looking for a set

of parameters ρ for which there exists a global X−valued

mild solution x(t) of (1) and is such that ‖x(t)‖ ≤
Ke−σt‖x0‖, ∀t ≥ 0 for some constants K,σ > 0.

As an application, one can consider the stabilization of

bilinear systems by means of switching controllers. Note

that such problem has been considered in several works

[2], [3], [5], [12], [14]. In [12] the authors treated

the case of a bounded operator B, and in [14] for a

Miyadera-Voigt type operator. Moreover, in [2] the case of

1−admissibility in Banach space has been considered either
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for Miyadera-Voigt or Desch-Schappacher perturbations.

However, the 1−admissibility condition excludes the case of

several unbounded systems evolving in a Hilbert state space.

In this paper, we will study the exponential stability of system

(1) under the p−admissibility property of the operator B with

p ≥ 1.

In the next section, we give some preliminaries on

Miyadera-Voigt and Desch-Schappacher operators. In the

third section we state and prove the main results. Section

IV concerns applications to feedback stabilization of the

reaction-diffusion equation.

II. PRELIMINARIES

As pointed out in the introduction, the unbounded aspect

of the operator B requires the introduction of interpolating

and extrapolating spaces. Classically, the spaces X1 and X−1

are defined as follows: X1 := (D(A), ‖ · ‖1), where ‖x‖1 :=
‖(λI − A)x‖X , x ∈ D(A) for some λ in the resolvent set

ρ(A) of A, and X−1 is the completion of X with respect to the

norm ‖x‖−1 := ‖(λI − A)−1x‖X , x ∈ X. These spaces are

independent of the choice of λ and are related by the following

continuous and dense embedding: X1 ↪→ X ↪→ X−1. That

way the unbounded operator B becomes bounded from X1

to X if B is a Miyadera-Voigt operator, and from X to the

extrapolating space X−1 in the case of Desch-Schappacher

operator.

A. Preliminary on Desch-Schappacher perturbations

Here, the operator B is supposed to be of

Desch-Schappacher type (see below). Thus, in order to

give a meaning to solutions of (1), we will use that the

semigroup S(t) can be extended to a C0−semigroup

(S−1(t))t≥0 on X−1 whose generator A−1 has D(A−1) = X
as domain and is such that A−1x = Ax, for any x ∈ D(A).
Note that if the semigroup S(t) is a contraction, then so is

S−1(t). The system (1) can be rewritten in the large space

X−1 in the following abstract form:

ẋ(t) = A−1x(t)− ρBx(t), x(0) = x0,

which is well-posed in X whenever A− ρB is a generator of

a C0−semigroup on X (cf. [9], Section II.6).

The next result provides sufficient conditions on the

Desch-Schappacher perturbation B to guarantee the existence

and uniqueness of the mild solution of (1) (see [1] & ([9], p.

183)).

Theorem 1. Let A be the generator of a C0−semigroup S(t)
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on X and let B ∈ L(X,X−1) be p−admissible for some

1 ≤ p < ∞, i.e., there is a T > 0 such that∫ T

0

S−1(T − t)Bu(s)ds ∈ X, ∀u ∈ Lp(0, T ;X)· (2)

Then for any ρ, the operator (A−1 − ρB)|X is defined on the

domain D((A−1 − ρB)|X) := {x ∈ X : (A−1 − ρB)x ∈ X}
by

(A−1 − ρB)|Xx := A−1x− ρBx, ∀x ∈ D((A−1 − ρB)|X)
(3)

is the generator of a C0−semigroup (T (t))t≥0 on X , which

verifies the following variation of parameters formula for all

x0 ∈ D((A−1 − ρB)|X)

T (t)x0 = S(t)x0 − ρ

∫ t

0

S−1(t− s)BT (s)x0ds, ∀t ≥ 0.

Let us recall the following lemma which can be deduced

from a general one from [8]:

Lemma 2. Let A generate a C0−semigroup S(t) on the

Hilbert space X . Then

- for all f ∈ L1
loc(0,+∞;X), we have∫ t

0

S−1(t− s)f(s)ds ∈ X, ∀t ≥ 0,

- for any w > 0, there is a constant K > 0 (which is

independent of t and f ) such that

‖
∫ t

0

S−1(t− s)f(s)ds‖X ≤ Kewt‖f‖L1(0,t;X) (4)

Remarks.
• An operator B ∈ L(X,X−1) satisfying the condition (2) is

called a Desch-Schappacher operator or perturbation.

• Notice that since W 1,p(0, T ;X) is dense in Lp(0, T ;X),
the rank condition (2) is equivalent to the existence of some

M > 0 such that

‖
∫ T

0

S−1(T − s)Bu(s)ds‖X ≤ M‖u‖Lp(0,T ;U), (5)

for all u ∈ W 1,p(0, T ;X), where ‖u‖Lp(0,T ;X) =

(

∫ T

0

‖u(t)‖pXdt)
1
p .

Moreover, if the operator B ∈ L(X,X−1) is p−admissible in

[0, T ], then it is so in [0, t] for any t ∈ [0, T ].
• Under the assumptions of Theorem 1, the mild solution

x(t) of the system (1) satisfies the following estimate, for any

0 < ρ < 1

T
1
p M

:

‖x(.)‖Lp(0,T ;X) ≤ T
1
p

1− ρT
1
pM

‖x0‖X , ∀x0 ∈ X, (6)

and from which, it follows that for all t ≥ 0, we have

‖x(t)‖X ≤
(
1 +

ρMT
1
p

1− T
1
p ρM

)
‖x0‖X . (7)

• Under the assumptions of Theorem 1, one can show that

the mild solution x(t) of the system (1) satisfies the following

estimate

‖
∫ t

0

S−1(t−s)Bx(s)ds‖X ≤ Mρ‖x0‖X , ∀t ∈ [T, 2T ], (8)

for every 0 < ρ < 1

T
1
p M

with Mρ :=

MT
1
p

1−ρT
1
p M

(
2 + ρMT

1
p

1−ρT
1
p M

)
.

B. Preliminary on Miyadera-Voigt Perturbations

Let us recall the following theorem regarding the

well-posedness of (1) in the case of Miyadera-Voigt

perturbations (see [13]).

Theorem 2. Let B ∈ L(X1, X) be such that∫ T

0

‖BS(s)x‖pXds ≤ α‖x‖pX , ∀x ∈ D(A), (9)

for some T, α > 0 with p > 1 (i.e., B is p−admissible w.r.t

S(t)). Then the operator AB defined by

ABx := (A+B)x, x ∈ D(AB) := D(A),

is the generator of a C0−semigroup T(t) on X .

Remarks.
• The semigroup T(t) satisfies, for any x0 ∈ D(A), the

following integral equation:

T(t)x0 = S(t)x0 +

∫ t

0

S(t− s)BT(s)x0ds, ∀t ≥ 0.

• Note that we can also consider the condition (24) for p = 1
provided that 0 < α < 1. Moreover (see [9], p. 199, [1], [14])

if the following estimate∫ T

0

‖BS(t)y‖dt ≤ β‖y‖X , ∀y ∈ D(A), (10)

holds for some T, β > 0, then we have:

(i) for every 0 < ρ < 1
β , the operator A − ρB, defined on

D(A), generates a C0−semigroup T(t) on X given for all

x0 ∈ X by

T(t)x0 = S(t)x0 − ρ

∫ t

0

S(t− s)BT(s)x0ds, t ≥ 0.

(ii) Moreover, T(t) satisfies∫ T

0

‖BT(s)x‖Xds ≤ β

1− ρβ
‖x‖X , ∀x ∈ D(A). (11)

III. STABILISATION RESULTS

In the following theorem, we provide sufficient

conditions for exponential stability of system (1) under

Desch-Schappacher perturbations.

Theorem 3. Suppose that A is the infinitesimal generator of

a linear C0−semigroup of contractions (S(t))t≥0 on X and

that for some T > 0,
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(i) there exists 1 < p < ∞ such that for all u ∈
Lp(0, T ;X), we have∫ T

0

S−1(T − s)Bu(s)ds ∈ X,

(ii) for any t > 0, Range(BS(t)) ⊂ X ,

(iii) there exists δ > 0 such that∫ T

0

Re 〈BS(t)x, S(t)x〉X dt ≥ δ‖S(T )x‖2X , ∀x ∈ D(A).

(12)

Then there is a ρ1 > 0 such that the system (1) is

exponentially stable on X for all ρ ∈ (0, ρ1).

Proof: for any ρ > 0, let us set AρB := (A−1 − ρB)|X .

According to Theorem II-A, the system (1) admits a unique

mild solution which is given, for x0 ∈ D((AρB)|X), by the

variation of parameters formula (see [7]):

x(t) = S(t)x0 − ρ

∫ t

0

S−1(t− s)Bx(s)ds, ∀t ≥ 0. (13)

Case 1: Let us suppose that for all x0 ∈ X and t > 0, we

have Bx(t) ∈ X . Let x0 ∈ D(AρB) be fixed. We have

d

dt
‖x(t)‖2X = 2Re〈AρBx(t), x(t)〉X , ∀t > 0· (14)

Moreover, by virtue of the closed graph theorem, we deduce

from (i) that for some constant M > 0 and for all u ∈
Lp(0, T ;X), we have∥∥∥∥∥

∫ T

0

S−1(T − s)Bu(s)ds

∥∥∥∥∥
X

≤ M‖u‖Lp(0,T ;X) (15)

and∥∥∥∥∥B
∫ T

0

S−1(T − s)Bu(s)ds

∥∥∥∥∥
X

≤ M‖u‖Lp(0,T ;X). (16)

Then we deduce from (13)

‖S(t)x0 − x(t)‖X ≤ ρM‖x(.)‖Lp(0,T ;X), ∀t ∈ [0, T ].

Then, according to the estimate (7), we conclude that

‖S(t)x0 − x(t)‖X ≤ ρMT
1
p

1− ρT
1
pM

‖x0‖X (17)

By similar arguments as above, we can see that (16) implies

that for all t ∈ [0, T ] we have

‖B
∫ t

0

S−1(t− s)Bx(s)ds‖X ≤ M‖x‖Lp(0,T ;X), (18)

from which it comes via (13)

‖B(S(t)x0 − x(t))‖X ≤ ρM‖x(.)‖Lp(0,T ;X),

and hence

‖B(S(t)x0 − x(t))‖X ≤ ρMT
1
p

1− ρT
1
pM

‖x0‖X . (19)

For x0 ∈ D(AρB), we have the following equality

Re 〈BS(t)x0, S(t)x0〉X = 〈BS(t)x0, S(t)x0 − x(t)〉X
+ 〈BS(t)x0 −Bx(t), x(t)〉X
+ 〈Bx(t), x(t)〉X

It follows that

Re 〈BS(t)x0, S(t)x0〉X
≤ ‖x0‖X‖(BS(t))∗(S(t)x0 − x(t))‖X
+ ‖B(S(t)x0 − x(t))‖X‖x(t)‖X
+ 〈Bx(t), x(t)〉X

Using (7), (17) and (19), comes

Re 〈BS(t)x0, S(t)x0〉X ≤ ρcMT
1
p

1− ρT
1
pM

‖x0‖2X

+
ρMT

1
p

1− ρT
1
pM

(
1 +

ρMT
1
p

1− T
1
p ρM

)
‖x0‖2X

+ Re 〈Bx(t), x(t)〉X ,

with c := ‖B∗‖L(X−1,X). Integrating the last inequality, yields∫ T

0

Re 〈BS(t)x0, S(t)x0〉X dt ≤ ρC1‖x0‖2X

+

∫ T

0

Re 〈Bx(t), x(t)〉X dt

with C1 = MT
1
p
+1

1−ρT
1
p M

(
1 + c+ ρMT

1
p

1−ρT
1
p M

)
.

Applying the inequality (iii), we derive that

δ‖S(T )x(t)‖2X−ρC1‖x(t)‖2X ≤
∫ t+T

t

Re 〈Bx(s), x(s)〉X ds

(20)

We deduce via (24) and the variation of constants formula (13)

that for all t ∈ [T, 2T ], we have

‖x(t)‖X ≤ ‖S(T )x0‖X + ρ‖ ∫ t

0
S−1(t− s)Bx(s)ds‖X

≤ ‖S(T )x0‖X + ρMρ‖x0‖X .

By reiterating the processes for t ∈ [kT, (k+1)T ], k ≥ 1, we

deduce that

‖x(t)‖X ≤ ‖S(T )x(kT )‖X + ρMρ‖x(kT )‖X .

Then for all k ≥ 1, we have

‖x((k + 1)T )‖2X ≤ 2‖S(T )x(kT )‖2X + 2ρMρ‖x(kT )‖2X .
(21)

Integrating (14) and using the dissipativeness of A gives

2ρ

∫ (k+1)T

kT

Re〈Bx(τ), x(τ)〉Xdτ ≤

‖x(kT )‖2X − ‖x((k + 1)T )‖2X .

This together with (20) and (21) implies

ρδ

(
‖x((k+1)T )‖2X−2ρMρ‖x(kT )‖2X

)
−2C1ρ

2‖x(kT )‖2X ≤

‖x(kT )‖2X − ‖x((k + 1)T )‖2X .

Hence

(1+ρδ)‖x((k+1)T )‖2X ≤
(
2δρ2Mρ+2C1ρ

2+1

)
‖x(kT )‖2X ·
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This implies

‖x ((k + 1)T ) ‖2X ≤ C2‖x(kT )‖2X
where C2 =

2ρ2(δMρ+C1)+1
1+ρδ , which belongs to (0, 1) for ρ →

0+. Using the integer part k = E
(

t
T

)
, we deduce from (8)

that

‖x(t)‖2X ≤ C3(C2)
k‖x0‖2X , (C3 > 0)

which gives the following exponential decay

‖x(t)‖X ≤ Ke−σt‖x0‖, ∀t ≥ 0, (22)

for some K,σ > 0. This estimate extends by density to all

x0 ∈ X. Hence the uniform exponential stability holds for

any 0 < ρ < ρ1, where ρ1 is such that 0 < ρ1 < 1

T
1
p M

and

2ρ2(δMρ+C1)+1
1+ρδ ∈ (0, 1).

Case 2: General case. For ε > 0 we consider the system (1)

with Bε := S−1(ε)B instead of B. Let us fist observe that the

operator Bε is p−admissible (p > 1) in the sense of (5) with

the same constant M (which is independent of ε). Then the

corresponding system admits a unique mild solution denoted

by xε, which satisfies the following formula

xε(t) = S(t)x0 − ρ

∫ t

0

S−1(t− s)Bεxε(s)ds, ∀t ≥ 0. (23)

Using the assumption (ii) we can see that Range(BεS(t)) ⊂
X and then from the V.C.F (23) we have Bεx(t) ∈ X, ∀t ≥ 0.
Let us show that limε→0 xε(t) = x(t) on X . For all t ≥ 0,

we have

xε(t)− x(t) = ρ

∫ t

0

S−1(t− s)Bεxε(s)ds

− ρ

∫ t

0

S−1(t− s)Bx(s)ds

= ρ

∫ t

0

S−1(t− s)Bε(xε(s)− x(s))ds

+ ρ

∫ t

0

S−1(t− s)(Bεx(s)−Bx(s)ds.

Then, using the admissibility of Bε, we get

‖xε(t)− x(t)‖X ≤ ρM‖xε(.)− x(.)‖Lp(0,t;X)

+ ρ‖
∫ t

0

S−1(t− s)(Bεx(s)−Bx(s))ds‖X

with M is a positive constant. Integrating the last inequality

over [0, T ], we obtain for all t ∈ [0, T ]

‖xε(.)− x(.)‖Lp(0,T ;X)

≤ Cρ

∫ T

0

‖
∫ t

0

S−1(t− s)(Bεx(s)−Bx(s)ds‖pX ,

where Cρ := ρ
1−(ρM2T )p . One can easily verify, via the

admissibility assumption, that

lim
ε→0

‖
∫ t

0

S−1(t− s)(Bεx(s)−Bx(s)ds‖X = 0.

Using again the admissibility of both operators B and Bε,

we get

‖
∫ t

0

S−1(t− s)(Bεx(s)−Bx(s)ds‖X

≤ ‖
∫ t

0

S−1(t− s)Bεx(s)‖X

+ ‖
∫ t

0

S−1(t− s)Bx(s)‖X
≤ 2M‖x(.)‖Lp(0,t;X).

We conclude from the dominated convergence theorem that

limε→0 xε(t) = x(t) in X. Then by procedure as in the first

case we obtain the following estimate

‖xε(t)‖X ≤ Ke−σt‖x0‖, ∀t ≥ 0,

where K,σ > 0 are the same as in (22). Using the convergence

of xε(t) to x(t) we get the estimate (22).
Remark. The previous idea of the proof may be applied, via

the above corollary, to the case of Desch-Schapacher operator

with analytic semigroup with for example, one can take B =
Aα, 0 < α < 1.

We have the following result regarding Miyadera-Voigt

perturbations.

Corollary. Let A be a generator of a C0−semigroup of

contractions S(t) on X and let B ∈ L(X1, X) satisfying (12)

and such that∫ T

0

‖BS(s)x‖pXds ≤ α‖x‖pX , ∀x ∈ D(A), (24)

for some T, α > 0 with p > 1. Then there exists ρ1 > 0 such

that the system (1) is exponentially stable for any ρ ∈ (0, ρ1).
Proof:

• According to Theorem 2, for ρ > 0 small enough (and for

every ρ > 0 if p > 1), there exists a unique mild solution

x(t) ∈ D(A), ∀x0 ∈ D(A).
• Let us prove that B admits an extension (also denoted by

B). It suffices to show that B is bounded from (D(A), ‖ · ‖X)
to (X−1, ‖ · ‖−1).

First let us observe that B(D(A)) ⊂ X ⊂ X−1. Moreover,

because B is bounded from X1 to X, the operator R(λ;A)B
is a bounded operator of X for any λ ∈ ρ(A) [13]. Then for

any x ∈ D(A), we have

‖Bx‖−1 = ‖R(η;A)Bx‖X ≤ C‖x‖X ,

with C is a positive constant. Thus B is bounded from

(D(A), ‖ · ‖X) to (X−1, ‖ · ‖−1), and by density it extends

to a bounded operator from (X, ‖ · ‖X) to (X−1, ‖ · ‖−1).
• For x0 ∈ D(A) we have x(t) ∈ D(A), t ≥ 0 and so

Bx(t) ∈ X, ∀t ≥ 0. Thus the assumption (ii) of Theorem 3

is not needed.

• From the proof of Theorem 3, we observe that it suffices

that (15) holds for u(·) = x(·). For this end, we will apply

Lemma 2. Indeed, let x0 ∈ D(A). Thus Bx(t) ∈ X . Then

applying the inequality (4), for t ∈ [0, T ] we get

‖
∫ t

0

S−1(t− s)Bx(s)ds‖X ≤ Kewt‖Bx(·)‖L1(0,t;X).
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Now we have according to the second subsection of the

preliminary,

‖Bx(·)‖L1(0,t;X) ≤ T
p−1
p α

1
p

1− ρT
p−1
p α

1
p

‖x0‖

where α is the p−admissibilty constant of (24).

The reminder of the proof is the same as in the proof of

Theorem 3.

IV. APPLICATIONS

Example 1. Let Ω be an open and bounded subset of

Rd, d ≥ 1, and let us consider the following bilinear equation

of diffusion type⎧⎨
⎩

∂
∂tx = Δx+ gx+ ν(t)(−Δ)

1
2x on (0,∞)

x(t) = 0 on ∂Ω× (0,∞)
x(0) = x0 on Ω

(25)

where g ∈ L∞(Ω), ν is a real valued bilinear control and

x(t) = x(ζ, t) ∈ L2(Ω) is the state. Let us observe that system

(25) can be written in the form of (1) if we close it by the

switching feedback control ν(t) = −ρ1{t≥0 / x(t) �=0}.

The strong stabilisation of (25) has been achieved in [6] by

making use of a (nonlinear) monotone feedback control. Here,

we aim to show the exponential stabilization of (25) using the

switching control. For this end we will verify the assumptions

of Theorem 4. Let us take the state space X = L2(Ω)
(endowed with its natural scalar product 〈·, ·〉X ), and consider

the control operator B = (−Δ)
1
2 and the system’s operator

A = Δ+ gI with D(A) = H2(Ω) ∩H1
0 (Ω). The operator A

generates an analytic semigroup S(t) on X (see [9], p. 107 and

p. 176) which is given by the following variation of constants

formula:

S(t)x = S0(t)x+

∫ t

0

S0(t− s)g(ξ)S(s)xds, t ≥ 0,

where S0(t) is the semigroup generated by A with g = 0.

In the sequel, in order to make the computation easier, we

restrict our self to the mono-dimension case, thus we consider

Ω = (0, 1). In this case the semigroup (S0(t)) is given by

S0(t)x =
∑
j≥1

e−αjt〈x, φj〉X φj , ∀x ∈ L2(Ω)

with αj = j2π2, j ≥ 1 is the set of eigenvalues of −Δ
with the corresponding orthonormal basis of L2(Ω): φj(x) =√
2 sin(jπx). Moreover, the semigroup S(t) is a contraction

if in addition∫
Ω

g(ξ)y2(ξ)dξ ≤ ‖y‖2H1
0 (Ω), ∀y ∈ H1

0 (Ω).

Thus, in the sequel we suppose this condition satisfied. Then

the operator B can be expressed as

Bx =
∑
j≥1

α
1
2
j 〈x, φj〉X φj , x ∈ L2(Ω).

Here, B is unbounded on L2(Ω) and it is bounded from L2(Ω)
into the space X−1, defined as the completion of L2(Ω) for

the norm ‖y‖ =
(∑
j≥1

1

αj
〈y, φj〉2

) 1
2 , ∀y ∈ L2(Ω).

Let T > 0 and let u ∈ Lp(0, T ;X). It follows from

the analyticity of the semigroup (S(t) (and so S−1(t))

that

∫ T

0

S−1(T − s)(−Δ)
1
2u(s)ds ∈ X, which gives the

admissibility of B (see [9], Prop. 3.3 and [15], Lemma. 4.3.9),

Let us check (ii). We have (observe that αj ≥ 1)

y ∈ D(A) ⇒
∑
j≥1

α2
j 〈y, φj〉2X < ∞

⇒
∑
j≥1

αj 〈y, φj〉2X < ∞

⇒ By ∈ X·
In other words D(A) ⊂ D(B|X). Using again the analyticity

of S(t) we conclude that Range(BS(t)) ⊂ X.
Now, using again the series expansion of BS(t)y for y ∈

D(A), we get after integrating:∫ T

0

〈BS(t)x, S(t)x〉X dt =

∫ T

0

∑
j≥1

α
1
2
j 〈S(t)x, φj〉2X dt

≥
∫ T

0

‖S(t)x‖2Xdt

≥ T‖S(T )x‖2X ,

hence the assumption (iii) of Theorem 3 is fulfilled.

According to Theorem 3, we conclude that for ρ > 0 small

enough, the control ν(t) = −ρ1{t≥0, x(t) �=0} guarantees the

uniform exponential stability of the system (25).

Example 2. Let Ω be an open bounded domain in Rd, d ≥
1 with sufficiently smooth boundary ∂Ω. We consider on X :=
L2(Ω) the following system:

⎧⎨
⎩

xt(t, .) = Δx(t, .) + g(.)x(t, .) + v(t)∇(a(.)x(t, .)), in Ω

x = 0, in ∂Ω
(26)

where a ∈ W 1,∞(Ω) s.t ∂a
∂ζi

> k > 0, for i = 1...n and

g ∈ L∞(Ω) is such that∫
Ω

g(ζ)x2dζ ≤ ‖∇x‖2Xn , ∀x ∈ H1
0 (Ω).

Under this last inequality, the operator A := Δ+g(ζ)IX with
D(A) := H1

0 (Ω) ∩ H2(Ω) generates a C0−semigroup S(t)
of contractions. Here, the operator B can be identified to the
mapping: x → ∇(ax) which is clearly A−bounded. For any
x ∈ D(A), we have∫ T

0

‖∇
(
a(S(t)x)

)
‖2Xndt ≤

4

∫ T

0

(
‖∇a(S(t)x)‖2Xn + ‖a∇(S(t)x)‖2Xn

)
dt

≤ 4T‖∇a‖2‖x‖2X + ‖a‖
∫ T

0

| 〈ΔS(t)x, S(t)x〉X |dt

≤ 4T‖∇a‖2‖x‖2X + T‖a‖L∞(Ω)‖g‖L∞(Ω)‖x‖2X+

‖a‖L∞(Ω)

∫ T

0

|〈 d
dt

S(t)x, S(t)x〉X |dt

≤ 4T‖∇a‖2‖x‖2X+T‖a‖L∞(Ω)‖g‖L∞(Ω)‖x‖2X+‖a‖L∞(Ω)‖x‖2X .
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Thus, the admissibility of B follows. This guarantees the

well-posedness of the system (26) for ρ small enough. Now,

for x ∈ D(A) and T > 0 we have∫ T

0

〈BS(t)x, S(t)x〉dt =
∫ T

0

〈∇(a(ζ)(S(t)x)), S(t)x〉Xdt

which gives by integrating∫ T

0

〈BS(t)x, S(t)x〉X dt = −
∫ T

0

〈aS(t)x,∇(S(t)x)〉X dt

= −
∫ T

0

1

2

∫ 1

0

a(ζ)∇ ((S(t)x)2(ζ)) dt
=

∫ T

0

1

2

∫ 1

0

∇(a(ζ))(S(t)x)(ζ))2dt

≥
∫ T

0

k

2
‖S(t)x‖2Xdt.

which gives (since ‖S(t)x‖X decreases)∫ T

0

〈BS(t)x, S(t)x〉X dt ≥ T‖S(T )x‖2X .

Thus, the assumption (12) is fulfilled. We conclude from

corollary that the system (26) is exponentially stable on X .

V. CONCLUSION

This paper provides sufficient conditions for exponential

stability of a linear system under a Desch-Schapacher

perturbation of the dynamic. The main assumptions of

sufficiency are formulated in terms of admissibility and

observability inequalities of unbounded linear operators. An

explicit decay rate of the stabilized state is provided. The

case of a Miyadera-Voigt perturbation is discussed as well.

The main stabilization result is further applied to show

the uniform exponential stabilization of unbounded bilinear

reaction diffusion and transport equations using a bang bang

controller.
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