Method of Moments Applied to a Cuboidal Cavity Resonator: Effect of Gravitational Field Produced by a Black Hole
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Method of Moments Applied to a Cuboidal Cavity Resonator: Effect of Gravitational Field Produced by a Black Hole

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

This paper deals with the formulation of Maxwell-s equations in a cavity resonator in the presence of the gravitational field produced by a blackhole. The metric of space-time due to the blackhole is the Schwarzchild metric. Conventionally, this is expressed in spherical polar coordinates. In order to adapt this metric to our problem, we have considered this metric in a small region close to the blackhole and expressed this metric in a cartesian system locally.

Keywords: Method of moments, General theory of relativity, Electromagnetism, Metric tensor, schwarzchild metric, Wave Equation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085896

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677

References:


[1] J. A. Kong, Electromagnetic Wave Theory, 2nd Ed. New York: Wiley, 1990.
[2] K. Murawski, Analytical and Numerical Methods for wave propagation in fluid media, World Scientific Publishing Co. Pte. Ltd., Vol. 7, series A, 2002.
[3] P.A.M. Dirac,General Theory of Relativity, second edition, Princeton University Press, 1996.
[4] Geroch and Robert, General Relativity from A to B, University of Chicago Press, Chicago, 1981.
[5] Thorne, Kip S.; Misner, Charles and Wheeler, John (1973), Gravitation , W. H. Freeman and Company, ISBN 0-7167-0344-0.
[6] Wald, Robert M. (1992), Space, Time, and Gravity: The Theory of the Big Bang and Black Holes, University of Chicago Press, ISBN 0-226- 87029-4.
[7] D. Finkelstein (1958), Past-Future Asymmetry of the Gravitational Field of a Point Particle, Phys. Rev. 110: 965-967.
[8] Lewis G. F. and Kwan, J. No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon, Publications of the Astronomical Society of Australia 24 (2): 46-52(2007).
[9] R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics , Phys. Rev. Lett. 11, 237 (1963).
[10] Carr B.J. , Primordial Black Holes: Do They Exist and Are They Useful?, Proceedings of "Inflating Horizon of Particle Astrophysics and Cosmology", Universal Academy Press Inc and Yamada Science Foundation, http://arxiv.org/abs/astro-ph/0511743 2005.
[11] McClintock, Jeffrey E.; Shafee, Rebecca; Narayan, Ramesh; Remillard, Ronald A.; Davis, Shane W. and Li, Li-Xin (2006), The Spin of the Near- Extreme Kerr Black Hole GRS 1915+105 , Astrophys.J. 652: 518-539, ¡http://arxiv.org/abs/astro-ph/0606076¿.
[12] Page, Ron N. , Hawking Radiation and Black Hole Thermodynamics, New.J.Phys. 7(203), (2005).
[13] Bloom, J.S., Kulkarni, S. R., Djorgovski, S. G., The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors, Astronomical Journal 123: 1111- 1148(2002).
[14] Winter, L.M., Mushotzky, R.F. and Reynolds, C.S., XMM-Newton Archival Study of the ULX Population in Nearby Galaxies, Astrophysical Journal 649: 730, 2006.
[15] Munyaneza, F.; R.D. Viollier (2001), The motion of stars near the Galactic center: A comparison of the black hole and fermion ball scenarios , Retrieved on 2006-03-25.
[16] Tsiklauri, David; Raoul D. Viollier (1998), Dark matter concentration in the galactic center, Retrieved on 2006-03-25.
[17] Heusler M, Stationary Black Holes: Uniqueness and beyond , Living Rev.Relativity1(6), 1998.
[18] Hawking S.W. and Penrose R. The Singularities of Gravitational Collapse and Cosmology Proc.Roy.Soc.Lon 314(1519): 529548,(1970) http://www.jstor.org/stable/2416467
[19] Hawking and Stephen, Black Hole Explosions Nature 248(1974): pp. 3031. doi:10.1038/248030a0.
[20] Celotti A., Miller J.C. and Sciama D.W., Astrophysical evidence for the existence of black holes Class. Quant. Grav. 16 (1999), http://arxiv.org/abs/astro-ph/9912186.
[21] Chandrasekhar, Subrahmanyan , Mathematical Theory of Black Holes , Oxford University Press,1999, ISBN 0-19-850370-9.
[22] Heusler M, Stationary Black Holes: Uniqueness and beyond , Living Rev.Relativity1(6), 1998.
[23] R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968.
[24] M.N.O.Sadiku, Elements of electromagnetics , Third Edition, Oxford University Press, New York.
[25] Arti Vaish and H. Parthasarathy, Modal Analysis of Waveguide using Method of Moment, Accepted for publication in HAIT Journal of Science and Engineering-B, 2007.
[26] Taylor, Edwin F. and Wheeler, John Archibald (2000), Exploring Black Holes, Addison Wesley Longman, ISBN 0-201-38423-X.
[27] Orosz, J.A et al (2007), A 15.65 solar mass black hole in an eclipsing binary in the nearby spiral galaxy Messier 33, Nature 449: 872-875. doi:10.1038/nature06218.
[28] Arti Vaish and H. Parthasarathy, Finite Element Analysis of Propagation Modes in a Waveguide: Effect of Gravitational Field, Accepted for publication in HAIT Journal of Science and Engineering-B, 2007.