Search results for: soil surface settlement.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2884

Search results for: soil surface settlement.

2164 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: Desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
2163 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
2162 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria

Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba

Abstract:

The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of Lead, Chromium, Iron and Zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.

Keywords: AAS, Heavy Metals, Mechanic Workshops, Soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2161 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
2160 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: Deep excavation, ground anchors, interaction, struts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
2159 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
2158 In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy

Authors: Masayoshi Matsui, Akiko Nakahara, Akiko Takatsu, Kenji Kato, Naoki Matsuda

Abstract:

The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.

Keywords: hemoglobin, reduction, slab optical waveguide spectroscopy, solid/liquid interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2157 Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)

Authors: Ramin Javadzadeh, Emad Javadzadeh

Abstract:

Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.

Keywords: CLA-AIS, failure surface, optimization methods, rock slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
2156 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: A Case Study on Contaminated Site Soil

Authors: M. Allagoa, A. Al-Tabbaa

Abstract:

The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to reduce the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of binders, with a focus on Total Heavy Metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk (ILCR) assessments and other indices to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0-320.5 kPa, while THM levels with a combination of Ground granulated blast furnace slag and Magnesium oxide, Portland cement and Pulverised fuel ash were less than 10 µg/l. Portland cement was below 1 µg/l. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 - 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), risk allowable daily dose intake (ADI), and risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.

Keywords: Risk daily dose intake, risk chronic daily intake, incremental lifetime cancer risk, ILCR, novel binders, additives binders, hazard index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
2155 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters

Authors: Hongji Tang, Yanbo Gao, Yue Yu

Abstract:

This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.

Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
2154 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy

Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori

Abstract:

Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.

Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
2153 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite

Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed

Abstract:

Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.

Keywords: Carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
2152 Automated Stereophotogrammetry Data Cleansing

Authors: Stuart Henry, Philip Morrow, John Winder, Bryan Scotney

Abstract:

The stereophotogrammetry modality is gaining more widespread use in the clinical setting. Registration and visualization of this data, in conjunction with conventional 3D volumetric image modalities, provides virtual human data with textured soft tissue and internal anatomical and structural information. In this investigation computed tomography (CT) and stereophotogrammetry data is acquired from 4 anatomical phantoms and registered using the trimmed iterative closest point (TrICP) algorithm. This paper fully addresses the issue of imaging artifacts around the stereophotogrammetry surface edge using the registered CT data as a reference. Several iterative algorithms are implemented to automatically identify and remove stereophotogrammetry surface edge outliers, improving the overall visualization of the combined stereophotogrammetry and CT data. This paper shows that outliers at the surface edge of stereophotogrammetry data can be successfully removed automatically.

Keywords: Data cleansing, stereophotogrammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2151 Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology

Authors: M. Rajasimman, K. Murugaiyan

Abstract:

In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.

Keywords: Optimization, metal, Hypnea valentia, response surface methodology, red algae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2150 A Proper Design of Wind Turbine Grounding Systems under Lightning

Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said

Abstract:

Lightning protection systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns are frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must taken into account. In this paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.

Keywords: WTs, LPS, GPR, Grounding System, Mitigating techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5208
2149 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: Surface water, drinking water, water quality, pollution, Thomas reservoir, Kano.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
2148 Gabriel-constrained Parametric Surface Triangulation

Authors: Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, Guillermo Peris-Fajarnes

Abstract:

The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.

Keywords: surface triangulation, conforming triangulation, surfacesampling, Gabriel complex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2147 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: Biogas, cover crops, catch crops, land use competition, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
2146 Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC <1.4 the moving velocity decreases and the bounce height increases as JRC increases. If the gradient is fixed, when JRC is greater, the bounce height will be higher, while the moving velocity will experience a downward trend. Therefore, the best protecting point and facilities can be chosen if the moving paths of rockfalls are precisely estimated.

Keywords: rock shape, surface roughness, moving path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
2145 Investigation of the Surface Features of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons (satellites), namely to identify which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze Georgian National Astrophysical Observatory has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40-cm and 125-cm), as well as polarimeter Automatic Scanning Electron Polarimeter (ASEP)-78, the latest generation photometer with polarimeter and modern light receiver Santana Barbara Instrument Group (SBIG). As it turns out from the analysis of the observed material, parameters P and M depend on: α, the phase angle of the moon (satellite); L, the orbital latitude of the moon (satellite); λ, the wavelength, and t, the period of observation, i.e., P = P (α, L, λ, t), and similarly: M = M (α, L, λ, t). Based on the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto has the least. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed materials, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, while the picture with Callisto is opposite. The paper provides an explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95
2144 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force.

Keywords: Volume-of-Fluid; SGIP model; CSS model; CSF model; PCIL model; surface tension force; spurious currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2143 Surface Charge Based Rapid Method for Detection of Microbial Contamination in Drinking Water and Food Products

Authors: Kandpal M. , Gundampati R. K , Debnath M.

Abstract:

Microbial contamination, most of which are fecal born in drinking water and food industry is a serious threat to humans. Escherichia coli is one of the most common and prevalent among them. We have developed a sensor for rapid and an early detection of contaminants, taking E.coli as a threat indicator organism. The sensor is based on co-polymerizations of aniline and formaldehyde in form of thin film over glass surface using the vacuum deposition technique. The particular doping combination of thin film with Fe-Al and Fe-Cu in different concentrations changes its non conducting properties to p- type semi conductor. This property is exploited to detect the different contaminants, believed to have the different surface charge. It was found through experiments that different microbes at same OD (0.600 at 600 nm) have different conductivity in solution. Also the doping concentration is found to be specific for attracting microbes on the basis of surface charge. This is a simple, cost effective and quick detection method which not only decreases the measurement time but also gives early warnings for highly contaminated samples.

Keywords: Sensor, Vacuum deposition technique, thin film, E.coli detection, doping concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2142 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers

Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang

Abstract:

One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.

Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881
2141 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: Railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
2140 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2139 Investigation of Phytoextraction Coefficient Different Combination of Heavy Metals in Barley and Alfalfa

Authors: F. Zaefarian, M. Rezvani, F. Rejali, M.R. Ardakani

Abstract:

Two seperate experiments by barley and alfalfa were conducted to a 2×8 factorial completely randomised design, with four replicates. Factors were inoculation (M) with Gomus mosseae or uninoculation (M0) and seven levels of contaminants (Co, Cd, Pb and combinations) plus an uncontaminated control treatment (C). Heavy metals in plant tissues and soil were quantified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Variant- Liberty 150AX Turbo). Phytoextraction coefficient of contaminants calculated by concentration of heavy metals in the shoot (mgkg-1) / concentration of heavy metals in soil (mgkg-1). In the barley, the highest rate of phytoextraction coefficient of Pb, Cd and Co was in M0Pb, M0PbCoCd and MCo, respectively (P<0.05). In the alfalfa plants, the highest phytoextraction coefficient of Cd, Co and Pb obtained in the treatments M0CoCd, M0Co and M0PbCd, respectively.

Keywords: phytoextraction coefficient, heavy metals, barley, alfalfa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
2138 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
2137 A Numerical Modeling of Piping Phenomenon in Earth Dams

Authors: N. Zaki Alamdari, M. Banihashemi, A. Mirghasemi

Abstract:

To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and the involved governing factors. Overtopping and piping are the two main reasons of earthdam failures. In the piping context, the piping is determined as a phenomenon which is occurred between two phases, the water liquid and the solid soil. In this investigation, the onset of piping and its development, as well as the movement of water in soil, are numerically approached. In this regard, a one-dimensional numerical model based on the mass-conserving finite-volume method is developed and applied in order to simulate the piping phenomenon in a continuous circular tunnel of given initial length and radius, located between upstream and downstream. The simulation result includes the time-variations of radius along the tunnel until the radius value reaches its critical and the piping phenomenon converts to overtopping.

Keywords: Earth dam, dam break, piping, internal erosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
2136 Adaptive Climate Responsive Vernacular Construction in High Altitude

Authors: Ar. Amitava Sarkar

Abstract:

In the traditional architecture, buildings were designed to achieve human comfort by using locally available building materials and construction technology which were more responsive to their climatic and geographic condition. This paper will try to bring out the wisdom of the local masons and builders, often the inhabitants themselves, about their way of living, and shaping their built environment, indoor and outdoor spaces, as a response to the local climatic conditions, from the findings of a field settlement.

Keywords: Traditional architecture, High altitude, Climatic adaptation, Sustainable construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6221
2135 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869