Search results for: performance parameters
1255 Comparative Evaluation of Adaptive and Conventional Distance Relay for Parallel Transmission Line with Mutual Coupling
Authors: S.G. Srivani, Chandrasekhar Reddy Atla, K.P.Vittal
Abstract:
This paper presents the development of adaptive distance relay for protection of parallel transmission line with mutual coupling. The proposed adaptive relay, automatically adjusts its operation based on the acquisition of the data from distance relay of adjacent line and status of adjacent line from line circuit breaker IED (Intelligent Electronic Device). The zero sequence current of the adjacent parallel transmission line is used to compute zero sequence current ratio and the mutual coupling effect is fully compensated. The relay adapts to changing circumstances, like failure in communication from other relays and non - availability of adjacent transmission line. The performance of the proposed adaptive relay is tested using steady state and dynamic test procedures. The fault transients are obtained by simulating a realistic parallel transmission line system with mutual coupling effect in PSCAD. The evaluation test results show the efficacy of adaptive distance relay over the conventional distance relay.Keywords: Adaptive relaying, distance measurement, mutualcoupling, quadrilateral trip characteristic, zones of protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31451254 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network
Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy
Abstract:
Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.
Keywords: Encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401253 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm
Authors: Kyoungwoo Park, Byeong-Sam Kim
Abstract:
Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591252 Clinical Parameters Response to Low-Level Laser versus Monochromatic Near-Infrared Photo Energy in Diabetic Patients with Peripheral Neuropathy
Authors: Abeer A. Abdelhamed
Abstract:
Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common microvascular complications of type 2 diabetes. Loss of sensation is thought to contribute to a lack of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low-level laser (LLL) and monochromatic near-infrared photo energy (MIRE) on pain, cutaneous sensation, static stability, and index of lower limb blood flow in diabetic patients with peripheral neuropathy. Methods: Forty diabetic patients with peripheral neuropathy were recruited for participation in this study. They were divided into two groups: The MIRE group, which contained 20 patients, and the LLL group, which contained 20 patients. All patients who participated in the study had been subjected to various physical assessment procedures, including pain, cutaneous sensation, Doppler flow meter, and static stability assessments. The baseline measurements were followed by treatment sessions that were conducted twice a week for six successive weeks. Results: The statistical analysis of the data revealed significant improvement of pain in both groups, with significant improvement in cutaneous sensation and static balance in the MIRE group compared to the LLL group; on the other hand, the results showed no significant differences in lower limb blood flow between the groups. Conclusion: LLL and MIRE can improve painful symptoms in patients with diabetic neuropathy. On the other hand, MIRE is also useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.Keywords: Diabetic neuropathy, Doppler flow meter, –Lowlevel laser, Monochromatic near-infrared photo energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871251 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441250 Intelligent Caching in on-demand Routing Protocol for Mobile Adhoc Networks
Authors: Shobha.K.R., K. Rajanikanth
Abstract:
An on-demand routing protocol for wireless ad hoc networks is one that searches for and attempts to discover a route to some destination node only when a sending node originates a data packet addressed to that node. In order to avoid the need for such a route discovery to be performed before each data packet is sent, such routing protocols must cache routes previously discovered. This paper presents an analysis of the effect of intelligent caching in a non clustered network, using on-demand routing protocols in wireless ad hoc networks. The analysis carried out is based on the Dynamic Source Routing protocol (DSR), which operates entirely on-demand. DSR uses the cache in every node to save the paths that are learnt during route discovery procedure. In this implementation, caching these paths only at intermediate nodes and using the paths from these caches when required is tried. This technique helps in storing more number of routes that are learnt without erasing the entries in the cache, to store a new route that is learnt. The simulation results on DSR have shown that this technique drastically increases the available memory for caching the routes discovered without affecting the performance of the DSR routing protocol in any way, except for a small increase in end to end delay.Keywords: Caching, DSR, on demand routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911249 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick S. Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.
Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5351248 Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification
Authors: Samir K. Deshmukh, Mayur M. Tajane
Abstract:
In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.Keywords: Membrane Distillation, Surface Modification, Orange Juice. Polytetrafluoroethylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201247 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.
Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6301246 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.
Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27961245 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives
Authors: Roozbeh Molavi, Davood A. Khaburi
Abstract:
The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30091244 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29381243 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods
Authors: W. Swiderski
Abstract:
Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491242 A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems
Authors: Ghalem Belalem, Yahya Slimani
Abstract:
Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.Keywords: Data Grid, replication, consistency, optimistic approach, pessimistic approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751241 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems
Abstract:
Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311240 Double Manifold Sliding Mode Observer for Sensorless Control of Multiphase Induction Machine under Fault Condition
Authors: Mohammad Jafarifar
Abstract:
Multiphase Induction Machine (IM) is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper we discuss the performance of double manifold sliding mode observer (DM-SMO) in Sensorless control of multiphase induction machine under unsymmetrical condition (one phase loss). This observer is developed using the IM model in the stationary reference frame. DM-SMO is constructed by adding extra feedback term to conventional single mode sliding mode observer (SM-SMO) which proposed in many literature. This leads to a fully convergent observer that also yields an accurate estimate of the speed and stator currents. It will be shown by the simulation results that the estimated speed and currents by the method are very well and error between real and estimated quantities is negligible. Also parameter sensitivity analysis shows that this method is rather robust against parameter variation.Keywords: Multiphase induction machine, field oriented control, sliding mode, unsymmetrical condition, manifold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181239 Fuzzy Controller Design for TCSC to Improve Power Oscillations Damping
Authors: M Nayeripour, H. Khorsand, A. Roosta, T. Niknam, E. Azad
Abstract:
Series compensators have been used for many years, to increase the stability and load ability of transmission line. They compensate retarded or advanced volt drop of transmission lines by placing advanced or retarded voltage in series with them to compensate the effective reactance, which cause to increase load ability of transmission lines. In this paper, two method of fuzzy controller, based on power reference tracking and impedance reference tracking have been developed on TCSC controller in order to increase load ability and improving power oscillation damping of system. In these methods, fire angle of thyristors are determined directly through the special Rule-bases with the error and change of error as the inputs. The simulation results of two area four- machines power system show the good performance of power oscillation damping in system. Comparison of this method with classical PI controller shows the increasing speed of system response in power oscillation damping.Keywords: TCSC, Two area network, Fuzzy controller, Power oscillation damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971238 Crude Glycerol Affects Canine Sperm Motility: Computer Assisted Semen Analysis in vitro
Authors: P. Massanyi, L. Kichi, T. Slanina, E. Kolesar, J. Danko, N. Lukac, E. Tvrda, R. Stawarz, A. Kolesarova
Abstract:
Target of this study was the analysis of the impact of crude glycerol on canine spermatozoa motility, morphology, viability, and membrane integrity. Experiments were realized in vitro. In the study, semen from 5 large dog breeds was used. They were typical representatives of large breeds, coming from healthy rearing, regularly vaccinated and integrated to the further breeding. Semen collections were realized at the owners of animals and in the veterinary clinic. Subsequently the experiments were realized at the Department of Animal Physiology of the SUA in Nitra. The spermatozoa motility was evaluated using CASA analyzer (SpermVisionTM, Minitub, Germany) at the temperature 5 and 37°C for 5 hours. In the study, 13 motility parameters were evaluated. Generally, crude glycerol has generally negative effect on spermatozoa motility. Morphological analysis was realized using Hancock staining and the preparations were evaluated at magnification 1000x using classification tables of morphologically changed spermatozoa. Data clearly detected the highest number of morphologically changed spermatozoa in the experimental groups (know twisted tails, tail torso and tail coiling). For acrosome alterations swelled acrosomes, removed acrosomes and acrosomes with undulated membrane were detected. In this study also the effect of crude glycerol on spermatozoa membrane integrity were analyzed. The highest crude glycerol concentration significantly affects spermatozoa integrity. Results of this study show that crude glycerol has effect of spermatozoa motility, viability, and membrane integrity. Detected changes are related to crude glycerol concentration, temperature, as well as time of incubation.Keywords: Dog, semen, spermatozoa, acrosome, glycerol, CASA, viability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21021237 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.
Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701236 Comparison of GSA, SA and PSO Based Intelligent Controllers for Path Planning of Mobile Robot in Unknown Environment
Authors: P. K. Panigrahi, Saradindu Ghosh, Dayal R. Parhi
Abstract:
Now-a-days autonomous mobile robots have found applications in diverse fields. An autonomous robot system must be able to behave in an intelligent manner to deal with complex and changing environment. This work proposes the performance of path planning and navigation of autonomous mobile robot using Gravitational Search Algorithm (GSA), Simulated Annealing (SA) and Particle Swarm optimization (PSO) based intelligent controllers in an unstructured environment. The approach not only finds a valid collision free path but also optimal one. The main aim of the work is to minimize the length of the path and duration of travel from a starting point to a target while moving in an unknown environment with obstacles without collision. Finally, a comparison is made between the three controllers, it is found that the path length and time duration made by the robot using GSA is better than SA and PSO based controllers for the same work.
Keywords: Autonomous Mobile Robot, Gravitational Search Algorithm, Particle Swarm Optimization, Simulated Annealing Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31191235 Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors
Authors: Mohammad Amin Safi, Mahmud Ashrafizaadeh, Amir Ali Ashrafizaadeh
Abstract:
A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.Keywords: Lattice Boltzmann model, Graphical processing unit, Binary mixture diffusion, 2D flow simulations, Optimized algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571234 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.Keywords: Multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8381233 Influence of Cyperus rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus indicus against White Spot Syndrome Virus Infection
Authors: T. Citarasu, M. Michaelbabu V. N. Vakharia
Abstract:
The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, FIII to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological, and immunological parameters. Surprisingly, the pooled fractions (F-IV to FVI) incorporated diets helped to significantly (P<0.01) suppressed viral multiplication, showed significant (P<0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P <= 0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.
Keywords: Antiviral drugs, Cyperus rotundus, Fenneropenaeus indicus, WSSV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26601232 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes
Authors: M. Hosseinnezhad, K. Gharanjig
Abstract:
Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.
Keywords: Anthocyanin, dye-sensitized solar cells, green energy, optical materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10851231 Differences in the Perception of Behavior Problems in Pre-school Children among the Teachers and Parents
Authors: Jana Kožárová
Abstract:
Even the behavior problems in pre-school children might be considered as a transitional problem which may disappear by their transition into elementary school; it is an issue that needs a lot of attention because of the fact that the behavioral patterns are adopted in the children especially in this age. Common issue in the process of elimination of the behavior problems in the group of pre-school children is a difference in the perception of the importance and gravity of the symptoms. The underestimation of the children's problems by parents often result into conflicts with kindergarten teachers. Thus, the child does not get the support that his/her problems require and this might result into a school failure and can negatively influence his/her future school performance and success. The research sample consisted of 4 children with behavior problems, their teachers and parents. To determine the most problematic area in the child's behavior, Child Behavior Checklist (CBCL) filled by parents and Caregiver/Teacher Form (CTF-R) filled by teachers were used. Scores from the CBCL and the CTR-F were compared with Pearson correlation coefficient in order to find the differences in the perception of behavior problems in pre-school children.
Keywords: Behavior problems, child behavior checklist, caregiver/teacher form, Pearson correlation coefficient, pre-school age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601230 Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology
Authors: Hamad N. Altalyan, Brian G. Jones, John Bradd
Abstract:
A comprehensive study was conducted to examine the removal of inorganic contaminants that exist in surface and groundwater in the Illawarra and Sydney regions. The ability of multi-walled carbon nanotubes (MWCNT), as a generation of membrane technology, was examined using a dead-end filtration cell setup. A set of ten compounds were examined in this study that represent the significant inorganic cations and anions commonly found in contaminated surface and groundwater. The performance of MWCNT buckypaper membranes in excluding anions was found to be better than that of its cation exclusion. This phenomenon can be attributed to the Donnan exclusion mechanism (charge repulsion mechanism). Furthermore, the results revealed that phosphate recorded the highest exclusion value reaching 69.2%, whereas the lowest rejection value was for potassium where no removal occurred (0%). The reason for this is that the molecular weight of phosphate (95.0 g/mol) is greater than the molecular weight of potassium (39.10 g/mol).
Keywords: Nanotechnology, buckypaper, carbon nanotube, CNT, multi-walled carbon nanotube, MWCNT, Botany Bay, Russell Vale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401229 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion
Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu
Abstract:
Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23961228 Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method
Authors: Z. Gholamzadeh, A. Zali, S. A. H. Feghhi, C. Tenreiro, Y. Kadi, M. Rezazadeh, M. Aref
Abstract:
Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.
Keywords: MCNP-4C, Reactor core, Multiplication factor, Reactivity, Peaking factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18441227 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841226 Assesing Extension of Meeting System Performance in Information Technology in Defense and Aerospace Project
Authors: Hakan Gürkan, Ahmet Denker
Abstract:
The Ministry of Defense (MoD) spends hundreds of millions of dollars on software to support its infrastructure, operate its weapons and provide command, control, communications, computing, intelligence, surveillance, and reconnaissance (C4ISR) functions. These and other all new advanced systems have a common critical component is information technology. Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes it one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old once, trendily new applications that do not really satisfy defense needs or lost though poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology Acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.Keywords: Iterative Process, Acquisition Management, Project management, Software Economics, Requirement analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243