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Abstract—Distributed control is an efficient and flexible approach
for coordination of multi-agent systems. One of the main
challenges in designing a distributed controller is identifying
the governing dynamics of the dynamical systems. Data-driven
system identification is currently undergoing a revolution. With
the availability of high-fidelity measurements and historical data,
model-free identification of dynamical systems can facilitate the
control design without tedious modeling of high-dimensional and/or
nonlinear systems. This paper develops a distributed control design
using consensus theory for linear and nonlinear dynamical systems
using sparse identification of system dynamics. Compared with
existing consensus designs that heavily rely on knowing the detailed
system dynamics, the proposed model-free design can accurately
capture the dynamics of the system with available measurements
and input data and provide guaranteed performance in consensus and
tracking problems. Heterogeneous damped oscillators are chosen as
examples of dynamical system for validation purposes.

Keywords— Consensus tracking, distributed control, model-free
control, sparse identification of dynamical systems.

I. INTRODUCTION

DATA-DRIVEN modeling of dynamical systems has

recently been revolutionized with the advances on

machine learning approaches and unprecedented availability

of high-resolution data from historical records. Several

approaches have been introduced for capturing the dynamics of

complex systems including: (i) dynamic mode decomposition

[1], [2], dynamic mode decomposition with control [3], which

heavily relies on a linear dynamics assumption but can

handle high-dimensional data, (ii) Koopman operator with

control [4], [5] that connects dynamic mode decomposition

to nonlinear dynamics through the Koopman operator, (iii)

genetic programming which constructs categories of candidate

nonlinear functions for the rate of change of state variables in

time [6]. A model is then selected as a Pareto optimal solution

that provides a balanced between model complexity and

predictive accuracy. (iv) Recently, an approach was developed

to automatically select from several candidate terms those

terms which are most suitable to describe the dynamics. This

method is called sparse identification of system dynamics

(SINDY), and uses a sparse regression technique from machine

learning to identify dominant dynamics of candidate functions,

and has shown promise in accurately modeling the unknown

dynamics of complex systems [7], [8]. One of the main

advantages of SINDY for control purposes is the sparsity

technique that reduces the training time and heavy reliance of

neural-network-based approaches for identification and control
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which can be hard to interpret. The proposed approach is

fully interpretable based on classical control theories. The

application of SINDY for capturing input-output models that

are appropriate for control design purposes was reported in [8],

[9]. It was shown in [8] that sparse identification can capture

dynamics of feedback control systems in nonlinear dynamics

and its application to model-predictive control of aircraft

dynamics was reported in [9]. While these studies show

the significant improvement in control design of unknown

dynamics, the reported studies mainly focused on centralized

control approaches that might not be practical for large-scale

systems with distributed complex dynamics, i.e., transportation

systems, power grids, buildings.
Distributed control in this case has a few advantages over

conventional centralized approaches: First, system security,

reliability, and scalability are improved [10], as no single

point of failure (central unit) exists. Second, computational

efforts are divided to many nodes instead of being performed

all at the central unit as in centralized mechanisms [10].

However, the application of model-free data-driven approaches

for distributed control of large-scale complex systems has not

been reported yet.
The goal of this paper is to investigate the application of

a sparse identification approach for distributed control design

of complex dynamics. Using the sparse regression technique,

input-output dynamics of the unknown heterogeneous

dynamical systems will be predicted. The learned dynamics

can then be used to design distributed cooperative controllers

that minimize the error between the desired and actual states.

The tracking control of dynamical systems using the sparse

identification technique will also be investigated. Contributions

of the paper are listed as:

• Designing a distributed controller with minimum

communication requirements for damped oscillators

using only measurements

• Providing guaranteed stability of the designed consensus

tracking control problem

• Accurately identifying the dynamics of damped

oscillators using sparse identification technique

The rest of the paper is organized as follows: Section II

formulates the sparse identification problem and Section III

includes the proposed distributed control design. Numerical

results are included in Section IV and Section V concludes

the paper.

II. MODEL-FREE IDENTIFICATION OF DYNAMICAL

SYSTEMS

A robust approach in identifying the governing equations of

nonlinear/linear systems is to construct families of candidate

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:16, No:10, 2022 

466International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nf

or
m

at
io

n 
an

d 
C

om
m

un
ic

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
72

3.
pd

f



functions for the rate of change of state variables in time.

Among all candidate functions, since most dynamical systems

have few nonlinear terms in the dynamics, sparsity promoting

techniques can be used to identify the candidate functions with

most impact in forming the system dynamics using available

measurements. This method is called sparse identification of

nonlinear dynamics (SINDY), which was originally proposed

in [7]. SINDY combines symbolic regression and sparse

representation to come up with the dynamics of the system.

Symbolic regression is a machine learning approach for

determining a function relating the input to output using

available data. In this research, SINDY will be used to identify

governing dynamics of a dynamical system for distributed

control design purposes. In the following, an overview of

sparse identification technique is included.

The sparse identification relies on the fact that many

dynamical systems of the form ẋ = f(x, u) have relatively

few terms in the right hand side of their governing equations.

We assume that the actual dynamics of a system is represented

by:

d

dt
x(t) = ẋ(t) = f(x(t),u(t)) (1)

where x(t) = [x1(t) x2(t) . . . xn(t)] ∈ R
n is a vector of

states and u(t) ∈ R
n is a vector of controllable inputs. In

regression problems, only a few terms are important and sparse

feature selection can be used to identify the most dominant

terms representing the dynamics.

To identify the governing equations of the system in (1),

a time-history of the state vector x(t), input u(t), and ẋ(t)
is required. In most practical systems, only x(t) and u(t) are

available and ẋ(t) needs to be estimated from ẋ(t). If the

measurement data is sampled at m intervals t1, t2, . . . , tm
and measurements are arranged into a matrix X,

X =

⎡
⎢⎢⎢⎣
xT (t1)
xT (t2)

...

xT (tm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

⎤
⎥⎥⎥⎦ (2)

and inputs for tm samples are written into a matrix U,

U =

⎡
⎢⎢⎢⎣
uT (t1)
uT (t2)

...

uT (tm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
u1(t1) u2(t1) . . . un(t1)
u1(t2) u2(t2) . . . un(t2)

...
...

. . .
...

u1(tm) u2(tm) . . . un(tm)

⎤
⎥⎥⎥⎦ (3)

the measurements for derivatives can be approximated

numerically from X following the procedure in the next

section.

A. Savitzky-Golay Filtering

In [11], Savitzky-Golay developed a filter that is used to

smooth out a noisy signal. This is necessary before estimating

the derivatives of X. Savitzky-Golay filters are also called

digital smoothing polynomial filters or least-square smoothing

filters. The main advantage of these filters compared to other

filters (i.e., finite impulse response (FIR) filters) is their ability

to minimize the least-squares errors in fitting a polynomial to

frames of noisy data. The basic idea behind Savitzky-Golay

filter is that having a group of 2M + 1 samples of a signal

x[n], centered at n = 0, the coefficients of a polynomial p(n)
that minimizes the mean-squared approximation error for the

group of samples are obtained [12]. The polynomial is defined

as:

p(n) =

N∑
k=0

akn
k (4)

and the coefficients ak are obtained to minimize the

mean-squared approximation error (MSE) expressed by [12]:

MSE =

M∑
n=−M

(p(n)− x[n])2 (5)

where M is denoted as the half-width of the approximation

interval. Savitzky and Golay showed in [11] that during each

interval, the output obtained by sampling the fitted polynomial

is equivalent to a fixed linear combination of the local set

of input samples. This observation simplified the smoothing

process by the fact the the output samples can be computed

by a discrete convolution sum of the form [12]:

y[n] =

M∑
m=−M

h[m] x[n−m] (6)

instead of differentiating (5) with respect to each of N +
1 unknown coefficients of the polynomial and setting the

corresponding derivative equal to zero. In this paper, the

existing Savitzky-Golay filter function of MATLAB is used

to smooth out the measurement samples X before estimating

the derivatives.

B. Estimating the Derivatives, Ẋ

Difference approximations are used to numerically solve

for the solution of ordinary and partial differential equations.

Considering a smooth function in the neighborhood of point

x, the derivatives can be approximated using Taylor series

expansion at specified mesh points. Since the central difference

approximation is more accurate for smooth functions, it is used

in our paper. In this case, Ẋ can be approximated by [13]:

Ẋ ≈ Xf (i+ 1)−Xf (i− 1)

2h
(7)

where Xf (i+1) is the filtered data at sample i+1 and h is the

mesh spacing, which is considered the same as the sampling

time of the simulation in this study, i.e., 5e−5 seconds.

C. Sparse Identification of System Dynamics

Having calculated Ẋ, the library of candidate functions will

be constructed as linear and nonlinear functions of the columns

of X and U. A typical choice of candidate functions include

polynomials and trigonometric functions for nonlinear systems

such as (8).

In (8), P2(X,U) and P3(X,U) denote nonlinear

combination of second- and third-order polynomials of X and
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Θ(X,U) =

⎡
⎢⎢⎣ 1 X U P2(X,U) P3(X,U) . . . sin(X,U) cos(X,U) sin(2(X,U)) . . .

⎤
⎥⎥⎦ (8)

P2(X,U) =

⎡
⎢⎢⎢⎣
x2
1(t1) x1(t1)x2(t1) . . . x2

2(t1) x1(t1)u1(t1) . . . u2
1(t1) . . .

x2
1(t2) x1(t2)x2(t2) . . . x2

2(t2) x1(t2)u2(t2) . . . u2
2(t2) . . .

...
...

. . .
...

. . .
... . . .

x2
1(tm) x1(tm)x2(tm) . . . x2

2(tm) x1(tm)u1(tm) . . . u2
1(tm) . . .

⎤
⎥⎥⎥⎦ (9)

U columns, respectively. For example, for the second-order

polynomial, the candidate function P2(X,U) is expressed in

(9) as:

The sparse coefficients of the matrix Γ can be solved using

the following equation [8]:

Ẋ = Θ(X,U)Γ, (10)

where each column of Γ represents a sparse vector

of coefficients identifying which terms are active. The

coefficients of Γ can be found using the sparse regression

formulation presented in Algorithm 1. If the intent is to

identify the signal U for feedback control, i.e., U = G(s)X,

where G(s) is the transfer function of the controller, the matrix

of inputs can be identified using [8]:

U = Θ(X)Γu (11)

where Θ(X) is the matrix of candidate functions and the terms

corresponding to U have been removed from Θ(X), i.e., as in

(12). Γu can be found using the sparse regression algorithm

similar to Γ.

In summary, (10) predicts the dynamics of the system using

available measurements and then the predicted dynamics can

be used for control design purposes, which will be discussed

in the next section. An example of a two-dimensional

controlled damped harmonic oscillator with linear dynamics is

considered to validate the effectiveness of the sparse regression

algorithm in identifying the dynamics. The dynamic system is

represented by equaation (13).

After learning the dynamics, the system with these dynamics

was first run for 25 seconds with a random input shown in

the third subplot in Fig. 1 and the model was trained for this

input. Dynamic response of x1 and x2 in response to this input

is depicted in the first two subplots in Fig. 1 and compared

to the actual model in (15), confirming a perfect prediction

of the regression model. The input then was changed from

25 to 50 seconds to a completely different type (sinusoidal)

that the model was not trained for, as it can be observed, the

Algorithm 1 Sparse Regression Algorithm

Input: Measurements X,U
Input: Estimated derivativesẊ

1: procedure LEAST-SQUARE

2: Γ = Θ\Ẋ (least-square solution)

3: for k = 1 : 10 do (number of iterations)

4: Set λ (sparcification knob)

5: |Γ| < λ −→ indsmall

6: Γ(indsmall) −→ 0
7: for k = 1 : n do (n dimension of state X)

8: indbig �= indsmall(:, k)
9: Γ(indbig, k) = Θ(:, indbig)\Ẋ(:, k)

10: end for
11: end for

Output: sparse matrix Γ

sparse identification results give accurate prediction of system

dynamics and inputs for this example.

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

0 5 10 15 20 25 30 35 40 45 50

-2

0

2

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

2

Fig. 1 Validation of sparse identification of a controlled damped oscillator.

Θ(X) =

⎡
⎢⎢⎣ 1 X P2(X) P3(X) . . . sin(X) cos(X) sin(2X) . . .

⎤
⎥⎥⎦ (12)
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Dynamical System 1

( , )i i ix f x u

Input

Dynamical System 2

( , )i i ix f x u

Dynamical System n

( , )i i ix f x u

Sparse Identification of Dynamic System 1 (SIDS)

( , , )J J x u u
s.t. Constraints

Optimization

J

Prediction

Sparse Identification

( )y t

( )u t

Measurements

Input

Sparse Identification of Dynamic System 2 (SIDS)

( , , )J J x u u
s.t. Constraints

Optimization

J

Prediction

Sparse Identification

( )y t

( )u t

Input

Sparse Identification of Dynamic System n (SIDS)

( , , )J J x u u
s.t. Constraints

Optimization

J

Prediction

Sparse Identification

( )y t

( )u t

Information Transfer Between Dynamical Systems

Distributed Control

0( ) ( )i ij j i ij i
j

u cK a x x g x x

iu
jx

ix

Distributed Control

0( ) ( )i ij j i ij i
j

u cK a x x g x x

iu

Distributed Control

0( ) ( )i ij j i ij i
j

u cK a x x g x x

iu

Fig. 2 Structure of the proposed model-free distributed control.

d

dt
ẋ = Aix+Biu =

[−0.1 2
−2 −0.1

] [
x1

x2

]
+

[
1
0

]
u (13)

III. DISTRIBUTED CONTROL DESIGN

In this section, the distributed control design for multiple

dynamical systems with unknown dynamics is explored. This

is a practical problem in real-world applications and often the

exact dynamics of the dynamical system of interest are not

exactly known. Classical distributed control design requires

the detailed dynamics of each distributed unit in order to

guarantee the optimality and stability of the design. It is

interesting to investigate whether the learned dynamics using

sparse identification can directly be used to design distributed

controllers with good performance. The predicted dynamics

of the controlled undamped oscillator are used to design

a distributed controller that can synchronize the response

of controllable variables (i.e., x1 in this example) using a

consensus following protocol and track a global reference

using a consensus tracking protocol. The structure of the

proposed model-free distributed control design is depicted

in Fig. 2. Assuming there exits n damped oscillators with

different dynamics (heterogeneous), a sparse identification

engine can be dedicated to each dynamical system to

identify its dynamics using available measurements. Once

the dynamics are identified, a control input can be designed

for the predicted system using communications between

the dynamical systems (information sharing following a

communication graph) and the designed input is supplemented

to the actual system with unknown dynamics.

A. Graph Theory
To design consensus algorithms for damped oscillators,

multi-agent system (MAS) theory is implemented by

considering each damped oscillator as an agent. Let us assume

an undirected graph G with its vertex set V and edge set E ,

for the communication system between dynamical systems.

In this notation, a vertex represents an agent and an edge

(k, j) ∈ E corresponds to the connection between agents

k and j. The neighboring set of agent k is denoted by

Nk � {j ∈ V : (k, j) ∈ E}. Furthermore, let akj denote

the kjth element of the adjacency matrix A of G, i.e. akj = 1
if (k, j) ∈ E and akj = 0 if (k, j) /∈ E . Then the degree

matrix of G is denoted by D = diag{dk}k=1,...,n, where

dk �
∑

j∈Nk
akj . Consequently, the Laplacian matrix L

associated to G is defined by L = D −A.

B. Control Design
Using the relative state information xi ∈ R

n, the control

input ui ∈ R
k for the average consensus protocol is defined

as:

ui = K
∑
j∈Ni

aij(xj − xi) (14)

where K ∈ R
k×n is a control gain that can be designed in

the sense that all the states in the subsystem converge to the

same value asymptotically when:

K = BTP (15)

where B is the input matrix and P is a positive definite matrix

that satisfies:

ATP + PA− 2βPBBTP + ξPP +
η20
ξ
In < 0 (16)

where η = [ηT1 , η
T
2 , . . . , η

T
N ] and ηi = xi −

N∑
j=1

rjxj (rj is

the left eigenvector of graph laplacian matrix) is the state
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disagreement vector, ξ is any positive real number, and β =
min{λ1, . . . , λnλ

, α1, . . . , αnμ} (λi are nλ real eigenvalues

of Laplacian matrix, and αi ± βi are nμ complex eigenvalues

of Laplacian matrix. In the above equation, η0 is defined as:

η0 = 2Nsing(T )sing(T−1) ‖r‖2 (17)

where N = 1+ nλ + 2nμ and sing(T ) is the largest singular

value of a nonsingular matrix T satisfying T−1LT = J ,

where J includes a diagonal matrix with 0 as its first element

and other diagonal terms include the eigenvalues of Laplacian

matrix as in (18):

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . . . . . . . 0
0 λ1 . . . . . . . . . . . . 0

0 . . .
. . . . . . . . . . . . 0

0 . . . . . . λnλ
. . . . . . 0

0 . . . . . . . . . λ1 . . . 0
...

...
...

...
...

. . .
...

0 . . . . . . . . . . . . . . . λnμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The proof for the above conditions can be found in [14].

If the objective is to design a consensus tracking problem so

that state xi of the dynamical system tracks a reference x0,

the input can be designed as:

ui = K
∑
j∈Ni

aaj(xj − xi)−K0a0i(x0 − xi) (19)

where a0i denotes the adjacency element between the leader

(one of the agents that receive reference information and shares

with its neighbors) and other agents (followers), which is 1 if

there is a connection between agent i and the leader (agent

0), and is 0 otherwise. The gain K0 can be designed similar

to gain K. The above input supplemented to the dynamical

system guarantees the error between state xi and reference x0

will approach zero, i.e., xi −→ x0.

IV. CASE STUDIES

To validate the effectiveness of the proposed model-free

distributed control, three controlled damped oscillators have

been considered. The actual but assumed unknown dynamics

of the heterogeneous oscillators are governed by their state

matrices in the following:

A1 =

[−0.1 2
−2 −0.1

]
, B1 =

[
1
0

]
(20)

A2 =

[−0.2 3
−2 −0.41

]
, B2 =

[
1
0

]
(21)

A3 =

[−0.15 1
−1 −0.21

]
, B3 =

[
1
0

]
(22)

First, each heterogeneous oscillator is supplemented with a

sparse identification model that received its measurements and

identifies the governing dynamics. For Θ(X,U), polynomials

up to degree 3 are considered as in (23). The resulting Γi

matrices for these heterogeneous oscillators are listed in Table

I. Once the dynamics of the oscillators are identified, the

distributed controllers are designed in two case studies using

the ideas in Section II.

TABLE I
PERFORMANCE MEASURES OF THE PROPOSED OPTIMIZATION MODEL

Row Γ1 Γ2 Γ3

Row 1 [0 0] [0 0] [0 0]
Row 2 [-0.149 1.997] [-0.32 2.99] [-0.147 0.997]
Row 3 [-1.939 -0.11] [-1.88 -0.412] [-1.012 -0.176]
Row 4 [1.043 0] [1.029 0] [0.995 0]

Rows 5-13 [0 0] [0 0] [0 0]

Fig. 3 depicts the simulation results for distributed control

of heterogeneous damped oscillators, where Fig. 3 (a) depicts

the control design performance (convergence to desired

values) on the actual systems (physical models) and Fig.

3 (b) illustrates the control design on the predicted sparse

identification dynamics. The first subplots on the top depict

the dynamics of state 1 (x1) for these three oscillators when

no controller is supplemented to the system. Due to the

heterogeneity of the dynamical systems, the responses of

these systems show different settling time and overshoots (due

to various initial conditions), but they all stabilize at their

equilibrium point (0) eventually. It can also be confirmed

that the learned dynamics exactly match with the physical

dynamics of the systems, denoting a successful identification

of system dynamics. Subplots in the middle demonstrate the

effectiveness of consensus following protocol in synchronizing

these damped oscillators. Due to the implementation of the

consensus protocol in (14), all damped oscillators reach to

their equilibrium at the same settling time and frequencies.

It can also be confirmed that the learned dynamics (left

subplot) exactly matches the distributed control design on the

physical dynamics. Finally, the consensus tracking protocol

was supplemented to the system by enabling oscillator 1 to

be leader with a setpoint of x0 = 1. As a result of the

consensus tracking protocol in (19), all the units will track

the same reference and the equilibrium point of all damped

oscillators changes to 1 (reference) confirming a successful

tracking control design. It is noted that the consensus design on

learned dynamics (right subplots) perfectly matches with the

design on the physical system without knowing the dynamics

of the physical system. The results suggest a potential for

implementation of distributed controllers for more complex

cyber-physical systems, i.e. robots, air crafts, and buildings,

without complex modeling procedures.

V. CONCLUSION

In this paper, a model-free distributed control design of

dynamical systems was studied. Using sparse identification

of system dynamics with control along with available

Θ(X,U) =
[
1 x1 x2 u x1

2 x1x2 x2
2 x1

3 x1
2x2 x1x2

2 x2
3 x1u x2u

]
(23)
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Fig. 3 Comparison between the distributed control design on the actual dynamics of damped oscillators (a) and predicted dynamics using sparse
identification (b)

measurements, dynamics of the system were predicted with

candidate polynomial functions. The learned dynamics were

then used to design a distributed controller for consensus

tracking and following problems. The proposed research

demonstrates the effectiveness of the sparse identification

technique for distributed control design of linear and nonlinear

systems. Such formulation can significantly enhance the

control design issue of complex dynamical systems. Future

research will focus on the application of distributed consensus

design using sparse identification technique in smart grid

applications.

REFERENCES

[1] M. Liu, L. Tan, and S. Cao, “Method of dynamic mode decomposition
and reconstruction with application to a three-stage multiphase pump,”
Energy, vol. 208, p. 118343, 2020.

[2] H. Lu and D. M. Tartakovsky, “Prediction accuracy of dynamic mode
decomposition,” SIAM Journal on Scientific Computing, vol. 42, no. 3,
pp. A1639–A1662, 2020.

[3] C. Folkestad, D. Pastor, I. Mezic, R. Mohr, M. Fonoberova, and
J. Burdick, “Extended dynamic mode decomposition with learned
koopman eigenfunctions for prediction and control,” in 2020 american
control conference (acc). IEEE, 2020, pp. 3906–3913.

[4] M. Al-Gabalawy, “Deep learning for koopman operator optimal control,”
ISA transactions, 2021.
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