Search results for: total liquid ventilation
2080 Determination of EDTA in Dairy Wastewater and Adjacent Surface Water
Authors: Congmin Z. Xie, Terry Healy, Peter Robinson, Kevin Stewart
Abstract:
An HPLC-UV analytical method was developed to determine ethylenediaminetetraacetic acid (EDTA) in dairy wastewater and surface water. The optimizing separation was achieved by reversed–phase ion-pair liquid chromatography on a C18 column using methanol as mobile phase solvent, tetrabutylammonium bromide as the ion-pair reagent in pH 3.3 formate buffer solution at a flow rate of 0.9 mL min-1 with a UV detector at 265 nm. No interference of Ca, Mg or NO3 - was detected. Method performance was evaluated in terms of linearity, repeatability and reproducibility. The method detection limit was 5 μg L-1. The contents of EDTA in dairy effluents were 72 ~ 261 μg L-1 at a large dairy site. A change of EDTA concentration was observed downstream of the dairy effluent discharge, but this was well under the predicted no effect concentration for aquatic ecosystem.Keywords: Dairy wastewater, EDTA, HPLC, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19132079 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation
Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo
Abstract:
Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.
Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192078 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.
Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13062077 The Effects of Production, Transportation and Storage Conditions on Mold Growth in Compound Feeds
Authors: N. Cetinkaya
Abstract:
The objective of the present study is to determine the critical control points during the production, transportation and storage conditions of compound feeds to be used in the Hazard Analysis Critical Control Point (HACCP) feed safety management system. A total of 40 feed samples were taken after 20 and 40 days of storage periods from the 10 dairy and 10 beef cattle farms following the transportation of the compound feeds from the factory. In addition, before transporting the feeds from factory immediately after production of dairy and beef cattle compound feeds, 10 from each total 20 samples were taken as 0 day. In all feed samples, chemical composition and total aflatoxin levels were determined. The aflatoxin levels in all feed samples with the exception of 2 dairy cattle feeds were below the maximum acceptable level. With the increase in storage period in dairy feeds, the aflatoxin levels were increased to 4.96 ppb only in a BS8 dairy farm. This value is below the maximum permissible level (10 ppb) in beef cattle feed. The aflatoxin levels of dairy feed samples taken after production varied between 0.44 and 2.01 ppb. Aflatoxin levels were found to be between 0.89 and 3.01 ppb in dairy cattle feeds taken on the 20th day of storage at 10 dairy cattle farm. On the 40th day, feed aflatoxin levels in the same dairy cattle farm were found between 1.12 and 7.83 ppb. The aflatoxin levels were increased to 7.83 and 6.31 ppb in 2 dairy farms, after a storage period of 40 days. These obtained aflatoxin values are above the maximum permissible level in dairy cattle feeds. The 40 days storage in pellet form in the HACCP feed safety management system can be considered as a critical control point.
Keywords: Aflatoxin, beef cattle feed, compound feed, dairy cattle feed, HACCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8482076 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions
Authors: Idris A. Elfeituri
Abstract:
This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.
Keywords: Destruction, exergy, gas turbine, irreversibility, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9072075 Groundwater Quality Assessment for Irrigation Use in Vadodara District, Gujarat, India
Authors: S. M. Shah, N. J. Mistry
Abstract:
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Under this study twelve groundwater samples have been collected from Padra taluka, Dabhoi taluka and Savli taluka of Vadodara district. Groundwater samples were chemically analyzed for major physicochemical parameter in order to understand the different geochemical processes affecting the groundwater quality. The analytical results shows higher concentration of total dissolved solids (16.67%), electrical conductivity (25%) and magnesium (8.33%) for pre monsoon and total dissolved solids (16.67%), electrical conductivity (33.3%) and magnesium (8.33%) for post monsoon which indicates signs of deterioration as per WHO and BIS standards. On the other hand, 50% groundwater sample is unsuitable for irrigation purposes based on irrigation quality parameters. The study revealed that application of fertilizer for agricultural contributing the higher concentration of ions in aquifer of Vadodara district.
Keywords: Groundwater pollution, agricultural activity, irrigation water quality, sodium adsorption ratio (SAR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41922074 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste
Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman
Abstract:
Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.Keywords: Eucalyptus, natural dye, textile fibers, wash fastness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33302073 Phytochemical Profiles and Antioxidant Activity of Selected Indigenous Vegetables in Northern Mindanao, Philippines
Authors: Renee P. Baang, Romeo M. Del Rosario, Nenita D. Palmes
Abstract:
The crude methanol extracts of five indigenous vegetables namely, Amarathus tricolor, Basella rubra L., Chochurus olitorius L., Ipomea batatas, and Momordica chuchinensis L., were examined for their phytochemical profile and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The values for DPPH radical scavenging activity ranged from 7.6-89.53% with B. rubra and I. batatas having the lowest and highest values, respectively. The total flavonoid content of all five indigenous vegetables ranged from 74.65-277.3 mg quercetin equivalent per gram of dried vegetable material while the total phenolic content ranged from 1.93-6.15 mg gallic acid equivalent per gram dried material. Phytochemical screening revealed the presence of steroids, flavonoids, saponins, tannins, carbohydrates and reducing sugars, which may also be associated with the antioxidant activity shown by these indigenous vegetables.
Keywords: Antioxidant, DPPH radical scavenging activity, Philippine indigenous vegetables, phytochemical screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47882072 Nuclear Data Evaluation for 217Po
Authors: Sherif S. Nafee, Amir K. Al-Ramady, Salem S. Shaheen
Abstract:
Evaluated nuclear decay data for the 217Po nuclide is presented in the present work. These data include recommended values for the half-life T1/2, α-, β-- and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons and the K-shell to L-shell and L-shell to M-shell and to N-shell conversion electrons ratios K/L, L/M and L/N have been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.
Keywords: Atomic Mass Evaluation, Nuclear Data Evaluation, Total Electron Conversion Electrons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22552071 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes
Authors: Azam Marjani, Saeed Shirazian
Abstract:
This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.
Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22802070 Effect of Bentonite on the Properties of Liquid Insulating Oil
Authors: Loai Nasrat, Mervat S. Hassan
Abstract:
Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.
Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26962069 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance
Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani
Abstract:
This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.
Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448562068 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off
Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh
Abstract:
Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.
Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31362067 Sintering Atmosphere Effects on the Densification of Al-SiC Compacts
Authors: Tadeusz Pieczonka, Jan Kazior
Abstract:
The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters, enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen.
Keywords: Al-SiC composites, densification, sintering atmosphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35332066 In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy
Authors: Masayoshi Matsui, Akiko Nakahara, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.Keywords: hemoglobin, reduction, slab optical waveguide spectroscopy, solid/liquid interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192065 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Authors: Hassan Hajabdollahi
Abstract:
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.
Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11192064 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry
Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour
Abstract:
Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.
Keywords: Antimicrobial properties, polyethylene, silver nanoparticles, strawberry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10262063 CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor
Authors: Sérgio S. de Jesus, Edgar Leonardo Martínez, Aulus R.R. Binelli, Aline Santana, Rubens Maciel Filho
Abstract:
The speed profiles, gas holdup (eG) and global oxygen transfer coefficient (kLa) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of eG and kLa; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in eG and kLa.
Keywords: CFD, Hydrodynamics, Mass transfer, Stirred airlift bioreactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37522062 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method
Authors: Dominik Böhm, Konrad Czerski
Abstract:
A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.
Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6152061 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour
Authors: A. M. Maqableh
Abstract:
Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.Keywords: Fluid Coupling, Mathematical Modelling, partially filled.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952060 Catalytic Activity of Aluminum Impregnated Catalysts for the Degradation of Waste Polystyrene
Authors: J. Shah, M. Rasul Jan, Adnan
Abstract:
The aluminum impregnated catalysts of Al-alumina (Al-Al2O3), Al-montmorillonite (Al-Mmn) and Al-activated charcoal (Al-AC) of various percent loadings were prepared by wet impregnation method and characterized by SEM, XRD and N2 adsorption/desorption (BET). The catalytic properties were investigated in the degradation of waste polystyrene (WPS). The results of catalytic degradation of Al metal, 20% Al-Al2O3, 5% Al-Mmn and 20% Al-AC were compared with each other for optimum conditions. Among the catalyst used 20% Al-Al2O3 was found the most effective catalyst. The BET surface area of 20% Al-Al2O3 determined was 70.2 m2/g. The SEM data revealed the catalyst with porous structure throughout the frame work with small nanosized crystallites. The yield of liquid products with 20% Al-Al2O3 (91.53 ± 2.27 wt%) was the same as compared to Al metal (91.20 ± 0.35 wt%) but the selectivity of hydrocarbons and yield of styrene monomer (56.32 wt%) was higher with 20% Al-Al2O3 catalyst.
Keywords: Impregnation, catalytic degradation, waste polystyrene, styrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20372059 Effects of Allelochemical Gramine on Metabolic Activity and Ultrastructure of Cyanobacterium Microcystis aeruginosa
Authors: Y. Hong, H. Y. Hu, A. Sakoda, M. Sagehashi
Abstract:
In this study, inhibition of Microcystis aeruginosa by antialgal alleochemical gramine, was studied by analyzing algal metabolic activity (represented by esterase and total dehydrogenase activities) and cell ultrastructure (showing morphological and ultrastructure alterations using transmission electron microscopy and DNA ladder analysis). After gramine exposure, esterase and total dehydrogenase activities were increased firstly but decreased later. In contrast with the controls, the cells exposed to gramine showed apparent ultrastructure alterations with thylakoids in breakage, phycobilins in decrease, lipid and cyanophycin granules abundant firstly but dissolved afterwards, DNA in fragementation. The occurrence of increase of metabolic activity and specific granules reflected that the resistance of cellular response to gramine was initiated. DNA fragementation associated with the increase of metabolic activity and specific granules hinted that gramine caused M. aeruginosa cells to initiate some morphotype of programmed cell death.Keywords: Allelochemical, gramine, metabolic activity, Microcystis aeruginosa, ultrastructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17832058 Accuracy of Peak Demand Estimates for Office Buildings Using eQUEST
Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett
Abstract:
The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, US. NJ DMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.
Keywords: Building Energy Modeling, eQUEST, peak demand, smart meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832057 An Integrated CFD and Experimental Analysis on Double-Skin Window
Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen
Abstract:
Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15212056 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11472055 Numerical Simulation in the Air-Curtain Installed Subway Tunnel for the Indoor Air Quality
Authors: Kyung Jin Ryu, Makhsuda Juraeva, Sang-Hyun Jeong, Dong Joo Song
Abstract:
The Platform Screen Doors improve Indoor Air Quality (IAQ) in the subway station; however, and the air quality is degraded in the subway tunnel. CO2 concentration and indoor particulate matter value are high in the tunnel. The IAQ level in subway tunnel degrades by increasing the train movements. Air-curtain installation reduces dusts, particles and moving toxic smokes and permits traffic by generating virtual wall. The ventilation systems of the subway tunnel need improvements to have better air-quality. Numerical analyses might be effective tools analyze the flowfield inside the air-curtain installed subway tunnel. The ANSYS CFX software is used for steady computations of the airflow inside the tunnel. The single-track subway tunnel has the natural shaft, the mechanical shaft, and the PSDs installed stations. The height and width of the tunnel are 6.0 m and 4.0 m respectively. The tunnel is 400 m long and the air-curtain is installed at the top of the tunnel. The thickness and the width of the air-curtain are 0.08 m and 4 m respectively. The velocity of the air-curtain changes between 20 - 30 m/s. Three cases are analyzed depending on the installing location of the air-curtain. The discharged-air through the natural shafts increases as the velocity of the air-curtain increases when the air-curtain is installed between the mechanical and the natural shafts. The pollutant-air is exhausted by the mechanical and the natural shafts and remained air is pushed toward tunnel end. The discharged-air through the natural shaft is low when the air-curtain installed before the natural shaft. The mass flow rate decreases in the tunnel after the mechanical shaft as the air-curtain velocity increases. The computational results of the air-curtain installed tunnel become basis for the optimum design study. The air-curtain installing location is chosen between the mechanical and the natural shafts. The velocity of the air-curtain is fixed as 25 m/s. The thickness and the blowing angles of the air-curtain are the design variables for the optimum design study. The object function of the design optimization is maximizing the discharged air through the natural shaft.Keywords: air-curtain, indoor air quality, single-track subway tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26612054 Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny
Authors: H. Bouaziz, N. Soudania, M. Essafia, I. Ben Amara, A. Hakim, K. Jamoussi, Km. Zeghal, N. Zeghal
Abstract:
In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’ damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione.
Keywords: Antioxidant status, arsenic trioxide, hepatotoxicity, mice, oxidative stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23652053 Physical-Chemical Parameters of Latvian Apple Juices and Their Suitability for Cider Production
Authors: Rita Riekstina-Dolge, Zanda Kruma, Daina Karklina, Fredijs Dimins
Abstract:
Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab variety apples grown in Latvia were investigated. For all samples soluble solids, titratable acidity, pH and sugar content were determined. Crab apples produce more dry matter, total sugar and acid content compared to the dessert apples but it depends on the apple variety. Total sugar content of crab apple juices was 1.3 to 1.8 times larger than in dessert apple juices. Titratable acidity of dessert apple juices is in the range of 4.1g L-1 to 10.83g L-1 and in crab apple juices titratable acidity is from 7.87g L-1 to 19.6g L-1. Fructose was detected as the main sugar whereas glucose level varied depending on the variety. The highest titratable acidity and content of sugars was detected in ‘Cornelia’ apples juice.
Keywords: Apple juice, hierarchical cluster analysis, sugars, titratable acidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35132052 The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect
Authors: Malika.D Kedir-Talha, Mohammed Mehenni
Abstract:
To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained.Keywords: Doppler frequency, Doppler spectrum, estimate speed, permanent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13432051 Effect of Partial Rootzone Drying on Growth, Yield and Biomass Partitioning of a Soilless Tomato Crop
Authors: N. Affi, A. El Fadl, M. El Otmani, M.C. Benismail, L.M. Idrissi
Abstract:
The object of the present research was to assess the effects of partial rootzone drying (PRD) on tomato growth, productivity, biomass allocation and water use efficiency (WUE). Plants were grown under greenhouse, on a sand substrate. Three treatments were applied: a control that was fully and conventionally irrigated, PRD-70 and PRD-50 in which, respectively, 70% and 50% of water requirements were supplied using PRD. Alternation of irrigation between the two root halves took place each three days. The Control produces the highest total yield (252tons/ha). In terms of fruit number, PRD-50 showed 23% and 16% less fruits than PRD-70 and control, respectively. Fruit size was affected by treatment with PRD-50 treatment producing 66% and 53% more class 3 fruits than, control and PRD-70, respectively. For plant growth, the difference was not significant when comparing control to PRD-70 but was significant when comparing PRD-70 and control to PRD-50. No effect was on total biomass but root biomass was higher for stressed plants compared to control. WUE was 66% and 27% higher for PRD-50 and PRD-70 respectively compared to control.
Keywords: Biomass, growth, partial rootzone drying, water use efficiency yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071