%0 Journal Article
	%A Kyung Jin Ryu and  Makhsuda Juraeva and  Sang-Hyun Jeong and  Dong Joo Song
	%D 2012
	%J International Journal of Computer and Systems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 63, 2012
	%T Numerical Simulation in the Air-Curtain Installed Subway Tunnel for the Indoor Air Quality
	%U https://publications.waset.org/pdf/2972
	%V 63
	%X The Platform Screen Doors improve Indoor Air Quality
(IAQ) in the subway station; however, and the air quality is degraded
in the subway tunnel. CO2 concentration and indoor particulate matter
value are high in the tunnel. The IAQ level in subway tunnel degrades
by increasing the train movements. Air-curtain installation reduces
dusts, particles and moving toxic smokes and permits traffic by
generating virtual wall. The ventilation systems of the subway tunnel
need improvements to have better air-quality. Numerical analyses
might be effective tools analyze the flowfield inside the air-curtain
installed subway tunnel. The ANSYS CFX software is used for steady
computations of the airflow inside the tunnel. The single-track subway
tunnel has the natural shaft, the mechanical shaft, and the PSDs
installed stations. The height and width of the tunnel are 6.0 m and 4.0
m respectively. The tunnel is 400 m long and the air-curtain is installed
at the top of the tunnel. The thickness and the width of the air-curtain
are 0.08 m and 4 m respectively. The velocity of the air-curtain
changes between 20 - 30 m/s. Three cases are analyzed depending on
the installing location of the air-curtain. The discharged-air through
the natural shafts increases as the velocity of the air-curtain increases
when the air-curtain is installed between the mechanical and the
natural shafts. The pollutant-air is exhausted by the mechanical and the
natural shafts and remained air is pushed toward tunnel end. The
discharged-air through the natural shaft is low when the air-curtain
installed before the natural shaft. The mass flow rate decreases in the
tunnel after the mechanical shaft as the air-curtain velocity increases.
The computational results of the air-curtain installed tunnel become
basis for the optimum design study. The air-curtain installing location
is chosen between the mechanical and the natural shafts. The velocity
of the air-curtain is fixed as 25 m/s. The thickness and the blowing
angles of the air-curtain are the design variables for the optimum
design study. The object function of the design optimization is
maximizing the discharged air through the natural shaft.
	%P 627 - 631