
 

 

    Abstract—Modelling techniques for a fluid coupling taken from 

published literature have been extended to include the effects of the 

filling and emptying of the coupling with oil and the variation in 

losses when the coupling is partially full.  In the model, the fluid flow 

inside the coupling is considered to have two principal velocity 

components; one circumferentially about the coupling axis 

(centrifugal head) and the other representing the secondary vortex 

within the coupling itself (vortex head).  The calculation of liquid 

mass flow rate circulating between the two halves of the coupling is 

based on: the assumption of a linear velocity variation in the 

circulating vortex flow; the head differential in the fluid due to the 

speed difference between the two shafts; and the losses in the 

circulating vortex flow as a result of the impingement of the flow 

with the blades in the coupling and friction within the passages 

between the blades. 

  

Keywords—Fluid Coupling, Mathematical Modelling, partially 

filled. 

I. INTRODUCTION 

LUID couplings are widely used in industry to provide a 

soft drive between driving and driven rotating machines.  

In most applications the coupling operates under steady 

conditions with a fixed quantity of liquid within the coupling.  

The characteristics of partially filled fluid couplings are 

complex and depend on the behaviour of the two-phase, 

unsteady, three dimensional flows.  Little work has been found 

in open literature describing modelling of fluid couplings and 

the methods available are for fully filled couplings.  In the 

application considered in this paper, the fluid coupling is used 

to provide an intermittent drive between two shafts where the 

coupling is engaged and disengaged by filling and then 

draining oil from the coupling.  It thus operates partially filled 

for a portion of the drive cycle.  

A number of studies have been reported concerning the 

analysis, design and performance prediction of a fluid 

coupling [1-5]. Rolfe [1] developed a mathematical analysis of 

hydraulic couplings using conventional design formulae and 

general rotor-dynamic theory, based on the use of non-

dimensional parameters.  The theory derived showed close 

agreement with experimental data taken from a test rig 

developed for this purpose.  Qualman & Egbert [2] presented 

different methods to predict the performance of fluid 

couplings. In their analysis, they considered a single effective 

flow path along which the fundamental equations of a one 

dimensional flow were applied.  This model, for a fully filled 

fluid coupling, was then extended by Wallace et al [3] to 
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model the fluid coupling performance using two approaches; 

the mean flow path approach (constant velocity) and the linear 

velocity approach where the velocity is assumed to increase 

linearly with distance from the mean radius.  The performance 

prediction for a fully filled coupling was compared with 

experimental data and it was found that the linear velocity 

approach gave an improvement over the constant velocity 

approach. This model was then used by Whitfield et al [4] to 

study the effect of a baffle plate on the torque characteristics 

of a fully filled coupling and the linear velocity approach 

again showed better agreement with experimental data.  In a 

further paper, Whitfield et al [5] used the simpler constant 

velocity approach [2 & 3] to develop a general performance 

prediction model for more complex multi-element torque 

converters. The model was verified by comparison with 

comparison with three and five element torque converters.  

The fluid coupling considered in this study is illustrated in 

Fig. 1. It comprises two almost identical halves each 

connected to one of the shafts.  The only difference between 

each half of the coupling is that there one more blade in one 

half to eliminate resonance at the blade passing frequency.  A 

shroud is then fitted over the driven half of the coupling and is 

fixed to the driving half of the coupling.  The purpose of the 

shroud is to retain the oil in the coupling.  The oil is fed to the 

coupling down a hole along the centre of the shaft of the 

driven half of the coupling and then through the gap in 

between each coupling half. 

II. THEORY AND MODELLING: 

The analytical model described in this paper is based on an 

extension of the model described by Wallace et al [3] to 

account for a partially filled fluid coupling with filling and 

emptying. This model uses an empirical calculation for the 

energy losses used to determining the mass flow rate 

circulating between each half of the coupling.  This circulating 

mass flow rate is directly proportional to the transmitted 

torque.  

The fluid flow inside the coupling is considered to have two 

principal components; one is the circumferential velocity 

about the coupling axis (this gives rise to the centrifugal head) 

and the other is the circulation of the vortex passing fluid 

between the two halves of the coupling in the plane of 

coupling axis (this gives rise to the vortex head). 
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Fig. 1 Schematic diagram of fluid coupling with filling and emptying 

 

Oil fed into the coupling is retained by the shroud.  Fig. 2 

shows a cross section of a fully filled fluid coupling indicating 

the main flow features. A pressure balance is made at the outer 

radius of the coupling where the fluid pressure circulating 

inside the coupling balances that held in the shroud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Cross section of a fully filled fluid coupling showing main 

flow features 

 

A. Flow Regimes 

For a partially filled coupling, two types of flow regime 

occur; the annular flow regime and the outer centred flow 

regime.  If the vortex head, which is generated by the angular 

velocity of the fluid circulating between the two halves of the 

coupling, is greater than the centrifugal head, which is 

generated by the rotational speed of the pump and turbine, the 

flow is considered to be annular flow.  Alternatively, if the 

centrifugal head dominates, the flow moves to the outer edge 

of the coupling and is considered to be outer centred flow. 

Figure 3 shows the annular and the outer centred flow regimes 

in a partially filled coupling.  The outer centred flow is shown 

to have an idealised circular vortex path and this is used to 

simplify the modelling.  In reality the liquid would be flung to 

the outer part of the coupling and the free surface would be at 

constant radius from the coupling axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Idealized Outer flow regime and Annular flow Centred flow 

regime 

 

Applying the continuity equation to the lower and upper 

parts of the coupling , the centre of the mean flow path, Rm, 

and the inner and outer radial location of the mean flow path, 

R1 and R2, can be determined as function of the coupling size, 

the oil volume fraction inside the coupling and the coupling 

flow regime (whether the flow is annular or outer centred). 

 

1) Outer centred flow regime:  

 By using the continuity condition of equal flow rates in the 

lower and upper portions of the coupling, the centre of the 

mean flow path is at radius Rm is given by: 

2/)RR(R 2
i

2
om += .            (1a) 

Similarly, the inner and outer radii of the mean flow path 

are given by: 

2/)RR(R 2
i

2
m1 += ,            (1b) 

2/)RR(R 2
o

2
m2 += ,            (1c) 

where the inner and outer radii of the oil inside the 

coupling, Ri and Ro, can be written as function of the 

centrifugal flow, D′ , diameter of and the vortex flow 

diameter, d ′ , as:   

( ) 2/dDRi ′−′= ,              (2a) 

( ) 2/dDRo ′+′= .              (2b) 

The diameter of the main flow D′  and the diameter of the 

vortex flow d ′  can be linked to the pitch circle diameter, D, 

and the minor diameter, d, by the oil volume fraction as: 

Dd

Dd
V/Vf

2

2

totoiloil

′′
== .          (3a) 

Also, from geometrical configurations: 

dDdD +=′+′  .              (3b) 

Substituting (3b) into (3a), gives  

0fDdd)dD(d 23 =+′++′ .          (4) 

Equation (4) is a third order algebraic equation which can 

be solved for d ′ at any given volume fraction and this gives 

values for all the flow radii using (1-3). 
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2) Annular flow regime:  

Similarly, from the continuity condition and the volume 

fraction definition, it can be found that: 

( ) 2/)RR(fR2R 2
i

2
o

2
i1a −+=  ,        (5a) 

( ) 2/)RR(fR2R 2
i

2
o

2
o2a −−= ,        (5b) 

( ) 4/)RR(fR4R 2
i

2
o

2
i1 −+=  ,        (5c) 

( ) 4/)RR(fR4R 2
i

2
o

2
o2 −−= ,         (5d) 

where, 

( ) 2/dDRi −=  ,              (6a) 

( ) 2/dDRo += .              (6b) 

 

B. Constant and linear velocity approaches: 

The torque developed in any turbo machine is given by the 

rate of change of angular momentum as the fluid passes 

through the passages in between the blades. The fluid coupling 

under consideration has straight blades, (blade angle equal to 

zero), and if the circumferential component of fluid velocity is 

considered to be equal to the blade speed, i.e. that the 

secondary vortex flow is parallel to the blades, or no slip, the 

torque can be written as: 

( ) ( )2
1

2
2p

2
1t

2
2p SRRmRRmT −=−= ωωω ɺɺ  ,      (7) 

where, S is the speed ratio given as: 
p

tS
ω
ω

= . 

To calculate the transmitted torque, the vortex mass flow 

rate, ,mɺ  needs to be determined.  In modelling the vortex mass 

flowrate, ,mɺ  of the fluid between the halves of the coupling 

(i.e. the circulation shown in Fig. 2) two velocity profiles are 

considered: a constant velocity in the vortex, in which it is 

assumed that the all the fluid moves at one speed (equal to that 

at the mean flow path) circulating around the vortex, and a 

linear velocity in which it is assumed that the fluid moves as a 

solid body rotating about the vortex with zero velocity at the 

mean radius and a maximum at the periphery. Figures 4 show 

a schematic diagram of these constant velocity and the linear 

velocity approaches. 

 

Constant velocity approach:  

The power input to the pump and the power output from the 

turbine are given as: 

( )2
1

2
2

2
p

.

P SRRmP −= ω ,            (8a) 

( )2
1

2
2pT

.

T SRRmP −= ωω ,           (8b) 

 

The power dissipated through the coupling is given as the 

difference between the power input to the pump and the power 

output from the turbine: 

TPL PPP −= .               (9) 

This can be expressed as a specific energy loss as: 

( )( )2
1

2
2pT

2
pL SRRp −−= ωωω .         (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Constant and linear velocity profiles 

 

The losses are usually considered into two parts [1 & 2]; the 

incidence loss, due to the loss as the flow strikes the blades as 

the liquid moves from one half of the coupling to the other, 

and the flow path circulation loss or passage loss, due to 

friction within the passages in the coupling.  Qualman and 

Egbert [2] gave the total incidence power losses as: 

( )( )2
1

2
2Tpi RR

2

1
p +−= ωω .        (11) 

The passage power loss was considered to be proportional 

to the square of the flow velocity in similar manner to that of 

pipe friction [3] as: 

2
f C.K

2

1
p = .               (12) 

By equating the difference between power input to the 

pump and the power output from the turbine with the 

summation of the incidence loss and the flow path circulation 

loss, the mean flow velocity can be written as: 

( )( )[ ]
5.0

2
1

2
2

2p
vor RRS1

K
C −−=

ω
 .       (13) 

Thus, the mass flow rate through the coupling can be 

calculated using the vortex velocity as: 

( )2i2
mvor RRCm −= ρπɺ      (Outer centred Flow),   (14a) 

( )2
2a

2
ovor RRCm −= ρπɺ      (Annular Flow).      (14b) 

 

1) Linear velocity approach:  

 Applying the methodology used by Wallace et al [3] for a 

fully filled coupling to a partially filled coupling, the 

transmitted torque and the absorbed power can be written as: 

pvor1KT ωω= ,               (15) 

)S1(KP 2
pvor1L −= ωω ,            (16) 

where K1 depends on the oil volume fraction, the coupling 

geometry and type of flow regime - annular or outer centred 

flow. 

K1 for outer centred flow is given as: 
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and for annular flow given as: 
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In order to calculate the transmitted torque, the vortex 

rotational speed is required. This can be found by calculating 

the power losses following the same procedure used by 

Wallace et al [3] where the power loss was divided into three 

components; (i) the incidence loss which is generally taken to 

be given by the square of the change in the tangential 

component of velocity relative to the rotation of the 

component which the fluid is entering, (ii) the friction loss 

which is obtained by applying pipe friction formulae to the 

flow within the passages of each half of the fluid coupling, 

(iii)  Circulation loss which represents other losses and in this 

case accounts for the secondary losses in the vortex as the 

flow passes between the blades.  It is represented as equivalent 

to the loss due to four 90° bends.. 

The total power loss (PL) which is experienced by the 

coupling is given as: 

( ) vor
22

pi
3
vorcfL )S1(KKKP ωωω −++=       (18) 

Ki, Kf and Kc are incident loss coefficient, friction loss 

coefficient and circulation loss coefficient respectively. Their 

values depend on the oil volume fraction, the coupling 

geometry and whether the flow is annular or outer centred 

flow. Following Wallace et al [3] these coefficients are: 

For outer centred flow: 

( ) ( )
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( )( )
( )( )

( ) ( )[ ]5
Umo

5
Lim

4
mooU

4
imiL

DRRDRR
20

fZ
         

RRRZD

RRRZD

4

f
Kf

−−+−−+















−+

+−+
=

πρ

π

ππρ

 ,  (19b) 

( ) ( )
( ) ( )





















+
+

+
−

++
+

−
=

5

RR

4

RRR3

RRR
2

RRR

10

R

K2K
5
o

5
i

4
o

4
im

3
o

3
i

2
m

2
o

2
i

3
m

5
m

c πρ ,   (19c) 

and for annular flow: 

( ) ( ) ( )
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In the above equations, the depth of the lower and upper 

stream lines thickness, DU and DL, are specified following 

Wallace et al [3] as: 

( )
flow Annular                                 RRD

flow centered Outer                          /10RRD

i1aL

imL

−=

−=
,  (21) 

flow Annular              D
R

R
   

RR

RR
D

flow centered Outer              D
R

R
   

RR

RR
D

L
o

i

2ao

i1a
U

L
o

i

mo

im
U










−

−
=










−

−
=

, (22) 

Equating the empirically derived power loss equation, (18), 

with the power absorbed in the coupling, (16), yields: 

( ) [ ] 0K)S1(K)S1(KK vor1i
2
p

3
cf =+−−++ ωωω  .  (23) 

The above equation is a third order algebraic equation 

which can be solved for the fluid vortex angular velocity. With 

the vortex angular velocity known, the torque can be 

calculated from (15).  The value taken for the empirical loss 

coefficient K in (12) (19c) and (20c) was 1.  This is typical of 

values given in the literature.  

C. Head Calculations 

The total coupling head at the outermost edge of the 

coupling where the flow passes into the shroud may be written 

as the summation of the centrifugal head and the vortex head, 

vorcencoup HHH += .              (24) 

Following Rolfe [1], the centrifugal head and the vortex 

head can be written as: 

( ) g2/RR
2

H 2
i

2
o

2
tp

cen −








 +
=

ωω
 ,        (25) 

( )2mo

2
vor

vor RR
g2

H −=
ω

 Outer centred Flow ,   (26a) 

( )22ao

2
vor

vor RR
g2

H −=
ω

 Annular Flow , `    (26b) 

At equilibrium, the coupling head balances the head of 

liquid in the shroud which is given by: 

( ) g2/LR
2

H 2
shr

2
o

2
tp

shr −








 +
=

ωω
.        (27) 

The shroud length, Lshr, is the distance from the axis of the 

coupling to the free surface in the shroud.  As the shroud head 

balances the total coupling head, the shroud length can be 

calculated by equating (24) with (27). 

D. Volume Balance: 

To calculate the oil volume fraction inside the coupling at 

any given time the volume of the oil inside the coupling must 

be known and this can be found by the volume balance: 
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shr_exhole_exinshrcoup VVVVV −−=+ .       (28) 

In (28) the volumes represent the cumulative flow from the 

time at which the coupling starts. The inlet volume, Vin, is 

given by the volume flow rate at the inlet.  

The shroud volume, VShr, can be calculated from the shroud 

geometry and the shroud length Lshr, can be calculated from 

(24) and (27).  

Since the location and size of the shroud holes is known, the 

head at the shroud exit holes can be written as: 

( ) g2/LL
2

H 2
shr

2
hole_ex

2
tp

hole_ex −








 +
=

ωω
.      (29) 

where Lex_hole is the distance between the coupling centre to 

the exit holes.  The velocity of the oil leaving the shroud 

through the shroud holes can be calculated as:   

hole_exhole_ex H.g2C =  .            (30) 

From the exit velocity, the discharge volume through the 

holes, Vex_hole, can be calculated by assuming a discharge 

coefficient. 

If the calculated shroud length is greater than the minimum 

shroud length (determined by the diameter of the hole in the 

middle of the shroud) this means that the shroud is not full and 

thus the discharge volume through the shroud, Vex_shr, is equal 

to zero. But if the calculated shroud length is less than the 

minimum shroud length this means that the shroud is full (and 

overflowing) and the shroud length is then equal to the 

minimum shroud length.   When the shroud is full the 

coupling head must balance the shroud head and in this case 

the volume fraction inside the coupling can be calculated by 

equating (24) with (27).  

Since all the volumes at any time can be calculated, the oil 

volume fraction inside the coupling can be specified and thus 

the flow regimes inside the coupling can be found from the 

head balance. Once the flow regime (annular or outer centred) 

and the volume fraction inside the coupling are known all the 

coupling characteristics can be found using the appropriate 

equations. 

III. RESULTS AND DISCUSSIONS 

In this study two different geometrical cases are considered; 

(i) Case A where the pitch circle diameter, D, is 133 mm, the 

minor diameter, d, is 50 mm and the oil filling rate is 230 litres 

per hour, (ii) Case B where the pitch circle diameter is 184 

mm, the minor diameter 70 mm, and the oil filling rate is also 

230 litres per hour.  In these cases the pump is driven by an 

electric motor and the turbine is connected to a large mass to 

give a high moment of inertia but low frictional losses.   

Figure 5 shows the transmitted torque calculated using both 

the constant velocity approach and the linear velocity 

approach. It can be seen that both approaches produce 

reasonable results.  This is because it includes terms to 

calculate the increased flow path circulation losses that occur 

when the coupling is only partially full and also it has a more 

realistic representation of the vortex circulation which is used 

to calculate the torque.  During the second acceleration and 

deceleration cycle, this lag is not evident.  It is suggested that 

during the initial fill, either air becomes trapped within the 

coupling preventing the oil volume fraction building up, or the 

oil inflow interacts with the liquid vortex circulating within 

the coupling reducing the circulation rate and hence the 

torque.  Clearly further work is needed to develop the 

modelling for this case.   

 

Fig. 5 Calculated torque using two different flow approaches for case 

A 

 

 

Fig. 6 Calculated torque using the linear velocity approach for case B 

 

The linear velocity approach is used to study and 

understand the flow within fluid coupling for Case B. Figure 6 

shows a calculated torque for Case B.  It can also be seen that 

this approach is able to predict unsteadiness in the torque 

occurring during acceleration and deceleration and possible 

reasons for this are commented on later in the discussion. 

Calculated turbine rotational speed for Case A together with 

resulted torque is shown in Fig. 7. It is clear that the torque 

reaches its maximum positive value at the speed up and its 
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negative value at the speed down regime. A convenient way of 

characterizing the torque generated by a fluid coupling is to 

express it in non-dimensional terms as a moment coefficient.  

The moment coefficient is defined as: 

52
p

m
D

T
C

ρω
=                (31) 

 

Fig. 7 Calculated turbine and pump rotational speed and the resulted 

torque for case A 

 

An interesting result is seen in Fig. 8 which shows the 

variation of the oil volume fraction with time for Case A and 

Case B.  It can be seen from that the coupling in Case A is 

filling fasters than Case B.  This is because the oil flow rate is 

the same but the volume of Case A is less than that for Case B.  

More interestingly it can be also be noticed that in Case A, 

when the coupling is full it stays full, while in Case B, after 

the oil volume fraction in the coupling reaches 1 it then starts 

oscillating between 0.78 and 0.96.  This occurs after an initial 

peak in the predicted torque  

IV. CONCLUSION 

Existing analytical models for the prediction of the 

performance of a fully filled fluid coupling have been 

extended to model a coupling which is partially filled and in 

which two distinct flow regimes occur:  annular flow and 

outer centred flow.    It is found that a one dimensional flow 

within the circulating vortex in the coupling does not give as 

good a prediction of performance as a linear velocity 

distribution within the circulating vortex, as has been reported 

by earlier workers.   

Although for the smaller coupling tested it is apparent that 

the model over-predicts the torque produced whilst the 

coupling is filling.  It is suggested that a more detailed model 

is required to give a better representation of the way the inflow 

of oil into the coupling interacts with the vortex flow within 

the coupling during filling. 

 

Fig. 8 Variation of oil volume fraction during initial start up for case 

A and case B 
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