Search results for: Latent heat storage unit(LHSU)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1943

Search results for: Latent heat storage unit(LHSU)

1373 Antioxidant and Aِntimicrobial Properties of Peptides as Bioactive Components in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, M. H. El-Kalyoubi, A. Y. Gibriel, A. A. Abou-Arab Arab

Abstract:

Dried soy protein hydrolysate powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactive compounds (soy protein hydrolysate) as antioxidant and antimicrobial were added at level of 1, 2 and 3 %.Chemical analysis and physical properties were affected by protein hydrolysate addition. The TBA values were significantly affected (P < 0.05) by the storage period and the level of soy protein hydrolysate. All the tested soybean protein hydrolysate additives showed strong antioxidant properties. Samples of soybean protein hydrolysate showed the lowest (P < 0.05) TBA values at each time of storage. The counts of all determined microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean protein hydrolysate. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was being significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing protein hydrolysate, while molds and yeast count showed a decreasing trend but not significant (P < 0.05) until the end of the storage period compared with control sample. Sensory attributes were also performed, added protein hydrolysate exhibits beany flavor which was clear about samples of 3% protein hydrolysate.

Keywords: Antioxidant, antimicrobial, isoflavones, bioactive peptide, antioxidant peptides, soybean protein hydrolysate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
1372 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

Authors: J. Y. Jang, Y. W. Lee, C. N. Lin, C. H. Wang

Abstract:

The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

Keywords: 3-D, slab, transient heat conduction, reheating furnace, thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
1371 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: Conduction, inverse problems, conjugated gradient method, laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
1370 Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube

Authors: Arash Mirabdolah Lavasani, Taher Maarefdoost

Abstract:

Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios.

Keywords: Wind tunnel, non-circular tube, blockage ratio, experimental heat transfer, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
1369 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1368 Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Authors: Moosa Haji Abbasi, Emad Benhelal, Arshad Ahmad

Abstract:

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties.

Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents.

The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

Keywords: Tank farm, safe distance, safe layout, risk assessment, PHAST.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15629
1367 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
1366 Heat-treated or Raw Sunflower Seeds in Lactating Dairy Cows Diets: Effects on Milk Fatty Acids Profile and Milk Production

Authors: H. Mansoori, A. Aghazadeh, K. Nazeradl

Abstract:

The objective of this study was to investigate the effects of dietary supplementation with raw or heat-treated sunflower oil seed with two levels of 7.5% or 15% on unsaturated fatty acids in milk fat and performances of high-yielding lactating cows. Twenty early lactating Holstein cows were used in a complete randomized design. Treatments included: 1) CON, control (without sunflower oil seed). 2) LS-UT, 7.5% raw sunflower oil seed. 3) LS-HT, 7.5% heat-treated sunflower oil seed. 4) HS-UT, 15% raw sunflower oil seed. 5) HS-HT, 15% heat-treated sunflower oil seed. Experimental period lasted for 4 wk, with first 2 wk used for adaptation to the diets. Supplementation with 7.5% raw sunflower seed (LS-UT) tended to decrease milk yield, with 28.37 kg/d compared with the control (34.75 kg/d). Milk fat percentage was increased with the HS-UT treatment that obtained 3.71% compared with CON that was 3.39% and without significant different. Milk protein percent was decreased high level sunflower oil seed treatments (15%) with 3.18% whereas CON treatment is caused 3.40% protein. The cows fed added low sunflower heat-treated (LS-HT) produced milk with the highest content of total unsaturated fatty acid with 32.59 g/100g of milk fat compared with the HS-UT with 23.59 g/100g of milk fat. Content of C18 unsaturated fatty acids in milk fat increased from 21.68 g/100g of fat in the HS-UT to 22.50, 23.98, 27.39 and 30.30 g/100g of fat from the cow fed HS-HT, CON, LS-UT and LS-HT treatments, respectively. C18:2 isomers of fatty acid in milk were greater by LSHT supplementation with significant effect (P < 0.05). Total of C18 unsaturated fatty acids content was significantly higher in milk of animal fed added low heat-treated sunflower (7.5%) than those fed with high sunflower. In all, results of this study showed that diet cow's supplementation with sunflower oil seed tended to reduce milk production of lactating cows but can improve C18 UFA (Unsaturated Fatty Acid) content in milk fat. 7.5% level of sunflower oil seed that heated seemed to be the optimal source to increase UFA production.

Keywords: Fatty acid profile, milk production, sunflower seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1365 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs

Authors: Varun

Abstract:

Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4- 16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.

Keywords: Artificial roughness, Solar Air heater, Triangular duct, V-Shaped Ribs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
1364 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
1363 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: Magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
1362 Shape Memory alloy Actuator System Optimization for New Hand Prostheses

Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli

Abstract:

Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.

Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
1361 Screening Wheat Parents of Mapping Population for Heat and Drought Tolerance, Detection of Wheat Genetic Variation

Authors: H.R. Balouchi

Abstract:

To evaluate genetic variation of wheat (Triticum aestivum) affected by heat and drought stress on eight Australian wheat genotypes that are parents of Doubled Haploid (HD) mapping populations at the vegetative stage, the water stress experiment was conducted at 65% field capacity in growth room. Heat stress experiment was conducted in the research field under irrigation over summer. Result show that water stress decreased dry shoot weight and RWC but increased osmolarity and means of Fv/Fm values in all varieties except for Krichauff. Krichauff and Kukri had the maximum RWC under drought stress. Trident variety was shown maximum WUE, osmolarity (610 mM/Kg), dry mater, quantum yield and Fv/Fm 0.815 under water stress condition. However, the recovery of quantum yield was apparent between 4 to 7 days after stress in all varieties. Nevertheless, increase in water stress after that lead to strong decrease in quantum yield. There was a genetic variation for leaf pigments content among varieties under heat stress. Heat stress decreased significantly the total chlorophyll content that measured by SPAD. Krichauff had maximum value of Anthocyanin content (2.978 A/g FW), chlorophyll a+b (2.001 mg/g FW) and chlorophyll a (1.502 mg/g FW). Maximum value of chlorophyll b (0.515 mg/g FW) and Carotenoids (0.234 mg/g FW) content belonged to Kukri. The quantum yield of all varieties decreased significantly, when the weather temperature increased from 28 ÔùªC to 36 ÔùªC during the 6 days. However, the recovery of quantum yield was apparent after 8th day in all varieties. The maximum decrease and recovery in quantum yield was observed in Krichauff. Drought and heat tolerant and moderately tolerant wheat genotypes were included Trident, Krichauff, Kukri and RAC875. Molineux, Berkut and Excalibur were clustered into most sensitive and moderately sensitive genotypes. Finally, the results show that there was a significantly genetic variation among the eight varieties that were studied under heat and water stress.

Keywords: Abiotic stress, genetic variation, fluorescence, wheat genotypes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
1360 Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator

Authors: Matthias Feiner, Francisco Javier Fernández García, Michael Arneman, Martin Kipfmüller

Abstract:

To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation.

Keywords: Helically-shaped, oil-free, R32, swirl-evaporator, twist flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
1359 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas

Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.

Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
1358 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet

Authors: Kai-Long Hsiao

Abstract:

In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.

Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1357 Travel Time Model for Cylinder Type Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we mainly analyze an automated parking system where the storage and retrieval requests are performed by a tower crane. In this parking system, the S/R crane which is located at the middle of the bottom of the cylinder parking area can rotate in both clockwise and counterclockwise and three kinds of movements can be done simultaneously. We develop some mathematical travel time models for the single command cycle under the random storage assignment using the characteristics of this system. Finally, we compare these travel models with discrete case and it is shown that these travel models display a good satisfactory performance.

Keywords: Parking system, travel time model, tower crane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
1356 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2816
1355 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel

Authors: F. Roger, A. Traidia, B. Reynier

Abstract:

Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.

Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1354 Optimal Document Archiving and Fast Information Retrieval

Authors: Hazem M. El-Bakry, Ahmed A. Mohammed

Abstract:

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Information Storage and Retrieval, Electronic Archiving, Fast Information Detection, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
1353 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid

Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari

Abstract:

In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.

Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
1352 Study on Using the Ground as A Heat Sink for A 12,000-Btu/h Modified Air Conditioner

Authors: W. Permchart, S. Tanatvanit

Abstract:

This paper presents the results of the experimental tests of the cooling performance of a 12,000-Btu/h modified air conditioner (referred to as M-AC) that use the ground as a heat sink of a condenser. In the tests, cooling capacity of M-AC with an optimal length of a condensing coil as well as life expectancy of copper coil buried underground were investigated. The lengths of copper coil fabricated and used as condenser coil of M-AC were set at 67, 50, 40 and 30 m whereas that of a 12,000-Btu/h conventional split-type air conditioner (referred to as C-AC) was about 22 m. The results showed that the ground can absorb heat rejected from a condenser of M-AC. The coefficient of performance (COP) of C-AC was about 2.5 whereas those of M-AC were found to be higher. It was found that the values of COP of M-AC with condensing coils of 67, 50 and 40 m long were about 6.9, 5.5 and 3.3, respectively, while that of 30-m-long one was found to be about 2.1. The electrical consumptions of M-AC were found lower than that of C-AC in the range of 11.5 – 15.5%. Additionally, life expectancy of underground condensing coil of M-AC was found to be over 7 years.

Keywords: Air conditioner, condenser, copper coil, ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
1351 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

Authors: H. Mohammadiun, A. Kianifar, A. Kargar

Abstract:

Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.

Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1350 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations

Authors: Sandeep P. Abhang, Girish V. Chowdhay

Abstract:

This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.

Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1349 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1348 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil

Abstract:

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Keywords: Auxiliary storage sorting, in-place sorting, sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1347 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: Building sector, heat, LCA, quarter level, systemic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1346 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers

Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar

Abstract:

Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.

Keywords: Polyvinyl Chloride, PVC Foam, PVC Composites, Glass Fiber Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
1345 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: Distillation, absorption, heat pump, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1344 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.

Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062