Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30123
Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: Building sector, heat, LCA, quarter level, systemic approach.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128091

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505

References:


[1] AGEB 2016: Working group on Energy Balances, online available at http://www.ag-energiebilanzen.de/, last checked 16/11/04
[2] M.A.Spielmann, L.Schebek, Integriertes Assessment energetischer Technologien: Modellierungsansätze auf Quartiersebene – Fallbeispiel Universitätscampus. Journal UmweltWirtschaftsforum, Vol. 24, Issue 1, pp 35-42, May 2016
[3] F. Eckardt, Handbuch Stadtsotiologie, Springer Wiesbaden - Germany, 2012
[4] M. Alisch, Soziale Stadtentwicklung. Widersprüche, Kausalitäten und Lösungen, Verlag für Sozialwissenschaften, Wiesbaden, 2002
[5] O. Schnur, Konzepte der Quartiersforschung im Überblick, online available at http://www.ils-forschung.de/download/Neighborhood_Trek.pdf, last checked at 16/11/04
[6] M. Häberli, N Schneider, Nachhaltighkeitsvergleich Zürich – Berlin, Springer Wiesbaden, 2002
[7] C. Galster, What is neighborhood, Int J Urban Reg Res 10(2): pp 243-263, doi:10.1111/j.1468-2427.1986.tb00014.x, 1986
[8] BMUB, Programme related research Neighbourhood. Strategies. Management, online available at http://www.energetische-stadtsanierung.info/energy-efficient-urban-redevelopment/?changelang=2, last checked at 16/11/04
[9] BMWI, EnEff:Stadt: Research for the energy-efficient town, online available at http://www.eneff-stadt.info/en/, last checked at 16/11/04
[10] H. Wolpensinger, Internetportal for sustainable settlements, online available at http://www.oekosiedlungen.de/, last checked at 16/11/04
[11] S. Klauß, Entwicklung einer Datenbank mit Modellgebäuden für energiebezogene Untersuchungen, insbesondere der Wirtschaftlichkeit, online available at http://www.bbsr-energieeinsparung.de/EnEVPortal/DE/EnEV/EnEV2013/Begleitgutachten/Sonstiges/_gutachten/DatenbankModellgebaeude/DL_Endbericht.pdf?__blob=publicationFile&v=1, last checked at 16/11/08
[12] K. Bettgenhäuser, Integrated Assessment Modelling for Building Stock, Ingenieurwissenschaftlicher Verlag, 2013
[13] Institute for housing and environment, Energiebilanz-Toolbox, online available at http://www.iwu.de/fileadmin/user_upload/dateien/energie/werkzeuge/ephw-toolbox.pdf, last checked at 16/11/08
[14] The decree for energy saving thermal protection and energy saving technique for buildings, online available at http://www.gesetze-im-internet.de/enev_2007/, last checked at 16/11/08
[15] P. Schormann, O. Behrla, Anbieter von Wärmepumpenstrom im Preisvergleich, 2016, online available at http://www.heizungsfinder.de/waermepumpe/service/preisvergleich-waermepumpenstrom, last checked 16/11/10
[16] U. Fahl, Die Entwicklung der Energiemärkte bis 2030 – Energieprognose 2009, Zentrum für europäische Wirtschaftsforschung, 2010
[17] J. Nitsch, T. Pregger, Y. Scholz, T. Naegler, M. Sterner, N. Gerhardt, A. v.Oehsen, C. Pape, Y. Saint-Drenan, B. Wenzel, Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global, 2010
[18] T. Nuthall, Roadmap 2050: A practical gude to a prosperous, low-carbon europe, 2010
[19] M. Schlesinger, D. Lindenberger, C. Lutz, Final report Entwicklung der Energiemärkte – Energiereferenzprognose, Basel/Cologne/Osnabrück, 2014
[20] S. Teske, Energy (r)evolution, A sustainable world energy outlook, 2012
[21] DIN EN ISO 14040, Life Cycle Assessment, Principles and Framework (ISO 14040:2006)
[22] DIN EN ISO 14044, Life Cycle Assessment, Requirements and guidelines (ISO 14044: 2006)
[23] ECB, European Central Bank, The definition of price stability, online available at https://www.ecb.europa.eu/mopo/strategy/pricestab/html/index.en.html, last checked at 16/11/09
[24] German Central Bank, Gegenüberstellung der Instrumentenkategorien der MFI-Zinsstatistik (Neugeschäft) und der Erhebungspositionen der früheren Bundesbank-Zinsstatistik, online available at https://www.bundesbank.de/Redaktion/DE/Downloads/Statistiken/Geld_Und_Kapitalmaerkte/Zinssaetze_Renditen/gegenueberstellung.pdf?__blob=publicationFile, last checked at 16/11/09
[25] C. Sprengard, S. Treml, A.H. Holm, Technologien und Techniken zur Verbesserung der Energieeffizienz von Gebäuden durch Wärmedämmstoffe, 2016
[26] DIN EN ISO 10456, Building materials and products – Hygrothermal properties – Tabulated design values and procedures dor determining declared and design thermal values (ISO 10456:2007),2010
[27] BMVBS, Kosten energierelevanter Bau- und Anlagenteile bei der energetischen Modernisierung von Wohngebäuden, 2012
[28] F. Asdrubali et al., Insulation materials for the building sector: A review and comparative analysis, doi: 10.1016/j.rser.2016.05.045, 2016
[29] Verband Fenster+Fassade, Mehr Energie sparen mit neuen Fenstern, report, 2014
[30] H.-M. Henning, A. Palzer., Was kostet die Energiewende, Fraunhofer Institute for solar energy systems (ISE), 2015
[31] J. Lambauer, U.Fahl, M.Ohl, M. Blesl, A. Voß, Industrielle Großwärmepumpen – Potenziale, Hemmnisse und Best-Practice Beispiele, University of Stuttgart, Germany, 2008
[32] ASUE, BHKW-Kenndaten 2014/15 – Module, Anbieter, Kosten, Report, Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V., 2015
[33] G.Erdmann, L. Dittmar, Technologische und energiepolitische Bewertung der Perspektiven von Kraft-Wärme-Kopplung in Deutschland, Technical University Berlin, Faculty of energy systems, 2010
[34] B.Eikmeier, J.Gabriel, W.Schulz, W.Krewitt, M.Nast, Analyse des nationalen Potentials für den Einsatz hocheffizienter KWK, einschließlich hocheffizienter Kleinst-KWK, unter Berücksichtigung der sich der EU-WKWK-Richtlinie ergebenden Aspekte, Final Report, Energy&Management Verlagsgesellschaft mbH, Herrsching, Germany, 2005
[35] J.Clausen, Kosten und Marktpotenziale ländlicher Wärmenetze, Borderstep Institut für Innovation und Nachhaltigkeit gGmbH, Hannover, Germany, 2012
[36] O.Langniß,T.Kohberg,H.F.Wüllbeck,M.Nast,M.Pehnt,S.Frick,H.Drück,E.Streicher, Evaluierung des Marktanreizprogramms für erneuerbare Energien:Ergebnisse der Förderung für das Jahr 2010, Report, Federal Ministry fort he Environment, Nature Conservation, Building and Nuclear Safety, Stuttgart, Germany, 2011
[37] T.Grage,M.Kahle,Machbarkeitsstudie für ein Fernwärmenetz in Steyerberg, Hemmingen, Germany, 2011
[38] M.Manderfeld, Handbuch zur Entscheidungsfindung – Fernwärme in der Fläche, Projektträger Jükich, 2008
[39] Database Ecoinvent 3.2 allocation default, LCI database, Fa. Ecoinvent, Technoparkstrasse 1, 8005 Zurich, Switzerland,
[40] Database GaBi professional, Thinkstep, LCI database, Fa. PE International, Stuttgart, Germany