Search results for: Hidden point
1941 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy
Authors: Wenhao Lan, Ning Li, Qiang Tong
Abstract:
To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.
Keywords: Mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7051940 Balancing of Quad Tree using Point Pattern Analysis
Authors: Amitava Chakraborty, Sudip Kumar De, Ranjan Dasgupta
Abstract:
Point quad tree is considered as one of the most common data organizations to deal with spatial data & can be used to increase the efficiency for searching the point features. As the efficiency of the searching technique depends on the height of the tree, arbitrary insertion of the point features may make the tree unbalanced and lead to higher time of searching. This paper attempts to design an algorithm to make a nearly balanced quad tree. Point pattern analysis technique has been applied for this purpose which shows a significant enhancement of the performance and the results are also included in the paper for the sake of completeness.Keywords: Algorithm, Height balanced tree, Point patternanalysis, Point quad tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26991939 Part of Speech Tagging Using Statistical Approach for Nepali Text
Authors: Archit Yajnik
Abstract:
Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.Keywords: Hidden Markov model, Viterbi algorithm, POS tagging, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17081938 Single Spectrum End Point Predict of BOF with SVM
Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu
Abstract:
SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.
Keywords: SVM, predict, BOF, single spectrum intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13601937 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4881936 A High Bitrate Information Hiding Algorithm for Video in Video
Authors: Wang Shou-Dao, Xiao Chuang-Bai, Lin Yu
Abstract:
In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.Keywords: Information Hiding, Embed, Quantification, Extract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981935 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's
Authors: J. Sulaiman, M. Othman, M. K. Hasan
Abstract:
Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.
Keywords: MEG iteration, second-order finite difference, weighted parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031934 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis
Abstract:
In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.
Keywords: Partially observable system, hidden Markov model, competing risks, residual life prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20411933 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35191932 Dimension Free Rigid Point Set Registration in Linear Time
Authors: Jianqin Qu
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.Keywords: Covariant point, point matching, dimension free, rigid registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6821931 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911930 High Securing Cover-File of Hidden Data Using Statistical Technique and AES Encryption Algorithm
Authors: A. A. Zaidan, Anas Majeed, B. B. Zaidan
Abstract:
Nowadays, the rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threatens. It-s a big security and privacy issue with the large flood of information and the development of the digital format, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information. Nowadays protection system classified with more specific as hiding information, encryption information, and combination between hiding and encryption to increase information security, the strength of the information hiding science is due to the non-existence of standard algorithms to be used in hiding secret messages. Also there is randomness in hiding methods such as combining several media (covers) with different methods to pass a secret message. In addition, there are no formal methods to be followed to discover the hidden data. For this reason, the task of this research becomes difficult. In this paper, a new system of information hiding is presented. The proposed system aim to hidden information (data file) in any execution file (EXE) and to detect the hidden file and we will see implementation of steganography system which embeds information in an execution file. (EXE) files have been investigated. The system tries to find a solution to the size of the cover file and making it undetectable by anti-virus software. The system includes two main functions; first is the hiding of the information in a Portable Executable File (EXE), through the execution of four process (specify the cover file, specify the information file, encryption of the information, and hiding the information) and the second function is the extraction of the hiding information through three process (specify the steno file, extract the information, and decryption of the information). The system has achieved the main goals, such as make the relation of the size of the cover file and the size of information independent and the result file does not make any conflict with anti-virus software.Keywords: Cryptography, Steganography, Portable ExecutableFile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021929 A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting
Authors: Yanmin Zhao, Siu Ming Yiu
Abstract:
To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.
Keywords: Short integer solution problem, signatures, the symmetric-key setting, watermarking schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5611928 Research on Platform of Testing Reference Point Effect under Managerial Decision-making Simulation Environment
Authors: Yang Jiang, Zhuchao Yu, Zhu Wang, Xueying Hong
Abstract:
Reference point effects of top managers exerts an influence on managerial decision-making behaviors. We introduces the main idea of developing the decision behavior testing system designed for top manager in team task circumstance. According to the theory of the reference point effect, study of testing experiments in the reference point effect is carried out. Under managerial decision-making simulation environment, a platform is designed for testing reference point effect. The system uses the outcome of the value of the reference point to report the characteristics of the decision behavior of top managers.
Keywords: reference point effect, decision-making behavior, top manager, managerial decision-making simulation environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10681927 Stego Machine – Video Steganography using Modified LSB Algorithm
Authors: Mritha Ramalingam
Abstract:
Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.Keywords: Data hiding, LSB, Stego machine, VideoSteganography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42681926 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11931925 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001924 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari
Abstract:
In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed, illustrated by a numerical example.
Keywords: Partially observable system, hidden Markov model, competing risks, multivariate Bayesian control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861923 Application of Neural Network in User Authentication for Smart Home System
Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat
Abstract:
Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.Keywords: Neural Network, User Authentication, Smart Home, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391922 Fixed Point of Lipschitz Quasi Nonexpansive Mappings
Authors: M. Moosavi, H. Khatibzadeh
Abstract:
In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.
Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921921 Evaluation of Factors Affecting Freezing Point of Milk
Authors: Jelena Zagorska, Inga Ciprovica
Abstract:
The freezing point of milk is in important indicator of the milk quality. The freezing point of milk is determined primarily to prove milk adulteration with water and to determine the amount of water in it. Chemical composition and properties of milk, thermal treatment and presence of any substance can influence freezing point of product. There are different substances, which can be added to milk with main purpose to prolong shelf-life of raw milk. There are detergent, preservatives, formaldehyde, hydrogen peroxide, antibiotics, sodium carbonate, and hydrogen peroxide. Therefore the aim of the present study was to determine freezing point of milk, skimmed milk, pasteurized milk and milk with different substances (formaldehyde, antibiotics, sodium carbonate, hydrogen peroxide, disinfectant, and detergent) in different concentrations. The thermal treatment and different undesirable substances presence in milk have significant influence on freezing point of it.Keywords: Antibiotics, freezing point, milk, pH, thermal treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103631920 Ethnocentrism: The Hidden Adversary of Effective Global Leadership
Authors: Ruxandra A. Vodă
Abstract:
With the industrial revolution, global leaders must more rapidly become knowledgeable of and develop essential cross-cultural competencies to be effective. Ethnocentrism represents a hidden barrier of effective leadership and must be acknowledged and addressed proactively by global leaders. The article examines the impact of ethnocentrism in four critical areas (leadership strategy, cross-cultural competencies, intercultural communication, and adaptation to international contexts) and argues that by developing cross-cultural competencies, leaders might naturally reduce ethnocentrism levels. This paper will also offer few examples to support international managers in understanding how ethnocentrism can affect performance.
Keywords: Adaptation to intercultural contexts, cross-cultural competencies, effective leadership, ethnocentrism, global leader, intercultural communication, leadership strategy, the GLOBE Project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6821919 A Web Text Mining Flexible Architecture
Authors: M. Castellano, G. Mastronardi, A. Aprile, G. Tarricone
Abstract:
Text Mining is an important step of Knowledge Discovery process. It is used to extract hidden information from notstructured o semi-structured data. This aspect is fundamental because much of the Web information is semi-structured due to the nested structure of HTML code, much of the Web information is linked, much of the Web information is redundant. Web Text Mining helps whole knowledge mining process to mining, extraction and integration of useful data, information and knowledge from Web page contents. In this paper, we present a Web Text Mining process able to discover knowledge in a distributed and heterogeneous multiorganization environment. The Web Text Mining process is based on flexible architecture and is implemented by four steps able to examine web content and to extract useful hidden information through mining techniques. Our Web Text Mining prototype starts from the recovery of Web job offers in which, through a Text Mining process, useful information for fast classification of the same are drawn out, these information are, essentially, job offer place and skills.Keywords: Web text mining, flexible architecture, knowledgediscovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26651918 Growing Self Organising Map Based Exploratory Analysis of Text Data
Authors: Sumith Matharage, Damminda Alahakoon
Abstract:
Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.
Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961917 FCA-based Conceptual Knowledge Discovery in Folksonomy
Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang
Abstract:
The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.
Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281916 Some Properties of Cut Locus of a Flat Torus
Authors: Pakkinee Chitsakul
Abstract:
In this article, we would like to show that there is no cut point of any point in a plane, but there exists the cut locus of a point in a flat torus. By the results, we would like to determine the structure of cut locus of a flat torus.
Keywords: Cut locus, flat torus, geodesics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461915 Best Proximity Point Theorems for MT-K and MT-C Rational Cyclic Contractions in Metric Spaces
Authors: M. R. Yadav, A. K. Sharma, B. S. Thakur
Abstract:
The purpose of this paper is to present a best proximity point theorems through rational expression for a combination of contraction condition, Kannan and Chatterjea nonlinear cyclic contraction in what we call MT-K and MT-C rational cyclic contraction. Some best proximity point theorems for a mapping satisfy these conditions have been established in metric spaces. We also give some examples to support our work.
Keywords: Cyclic contraction, rational cyclic contraction, best proximity point and complete metric space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721914 Synthesis of Wavelet Filters using Wavelet Neural Networks
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641913 A Dynamic RGB Intensity Based Steganography Scheme
Authors: Mandep Kaur, Surbhi Gupta, Parvinder S. Sandhu, Jagdeep Kaur
Abstract:
Steganography meaning covered writing. Steganography includes the concealment of information within computer files [1]. In other words, it is the Secret communication by hiding the existence of message. In this paper, we will refer to cover image, to indicate the images that do not yet contain a secret message, while we will refer to stego images, to indicate an image with an embedded secret message. Moreover, we will refer to the secret message as stego-message or hidden message. In this paper, we proposed a technique called RGB intensity based steganography model as RGB model is the technique used in this field to hide the data. The methods used here are based on the manipulation of the least significant bits of pixel values [3][4] or the rearrangement of colors to create least significant bit or parity bit patterns, which correspond to the message being hidden. The proposed technique attempts to overcome the problem of the sequential fashion and the use of stego-key to select the pixels.
Keywords: Steganography, Stego Image, RGB Image, Cryptography, LSB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111912 A New Maximum Power Point Tracking for Photovoltaic Systems
Authors: Mohamed Azab
Abstract:
In this paper a new maximum power point tracking algorithm for photovoltaic arrays is proposed. The algorithm detects the maximum power point of the PV. The computed maximum power is used as a reference value (set point) of the control system. ON/OFF power controller with hysteresis band is used to control the operation of a Buck chopper such that the PV module always operates at its maximum power computed from the MPPT algorithm. The major difference between the proposed algorithm and other techniques is that the proposed algorithm is used to control directly the power drawn from the PV. The proposed MPPT has several advantages: simplicity, high convergence speed, and independent on PV array characteristics. The algorithm is tested under various operating conditions. The obtained results have proven that the MPP is tracked even under sudden change of irradiation level.Keywords: Photovoltaic, maximum power point tracking, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155