Best Proximity Point Theorems for MT-K and MT-C Rational Cyclic Contractions in Metric Spaces
Authors: M. R. Yadav, A. K. Sharma, B. S. Thakur
Abstract:
The purpose of this paper is to present a best proximity point theorems through rational expression for a combination of contraction condition, Kannan and Chatterjea nonlinear cyclic contraction in what we call MT-K and MT-C rational cyclic contraction. Some best proximity point theorems for a mapping satisfy these conditions have been established in metric spaces. We also give some examples to support our work.
Keywords: Cyclic contraction, rational cyclic contraction, best proximity point and complete metric space.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1336234
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676References:
[1] Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 36653671 (2009).
[2] Banach, S., Surles operation dans les ensembles ab- stracts etleur application aux equations integrals.Fun.Math,Vol. 3, (1922), 133 - 181.
[3] Chatterjee, S.K., Fixed point theorems. Comptes. Rend. Acad. Bulgaria Sci.Vol.25, (1972), 727-730.
[4] Di Bari, C. , Suzuki, T., and Vetro, C. , Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Analysis A, vol. 69, no. 11, pp. 37903794, 2008.
[5] Du, W.S., Some new results and generalizations in metric fixed point theory, Nonlinear Analysis: Theory, Methods and Applications, 73(2010), 1439-1446.
[6] Du, W.S., Nonlinear contractive conditions for coupled cone fixed point theorems. Fixed Point Theory Appl. 2010, Article ID 190606 (2010). doi:10.1155/2010/190606
[7] Du, W.S, On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. 159, 49-56 (2012).
[8] Du, W.S. and Lakzian, H., Nonlinear conditions for the existence of best proximity points, Journal of Inequalities and Applications 2012, 2012:206
[9] Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 10011006 (2006).
[10] Fisher, B., A fixed point theorem for compact metric space Publ. Inst Math, Vol.25, 193-194 (1976).
[11] Kannan, R., Some results on fixed points -II .Bul- letin of Calcutta Math.Soc.Vol.60, (1969), 71-76.
[12] Karpagam, S., Agrawal, S.: Best proximity point theorems for p-cyclic MeirKeeler contractions. Fixed Point Theory Appl., Art. ID 197308 (2009)
[13] Karpagam S. and Agrawal, S., Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. 74 (2011), 1040-1046.
[14] Khan, M.S., A fixed point theorem in metric spaces, Riv. Mat. Univ. Parma (Italy), 1975.
[15] W.A. Kirk, P.S. Srinavasan and P. Veeramani ”Fixed points for mapping satisfying cyclical contractive conditions” Fixed Point Theory 4, 79-89(2003).