
Application of Neural Network in User 
Authentication for Smart Home System 

A. Joseph, D.B.L. Bong, D.A.A. Mat 

Abstract— Security has been an important issue and concern in the 
smart home systems. Smart home networks consist of a wide range of 
wired or wireless devices, there is possibility that illegal access to 
some restricted data or devices may happen. Password-based 
authentication is widely used to identify authorize users, because this 
method is cheap, easy and quite accurate. In this paper, a neural 
network is trained to store the passwords instead of using verification 
table. This method is useful in solving security problems that 
happened in some authentication system. The conventional way to 
train the network using Backpropagation (BPN) requires a long 
training time. Hence, a faster training algorithm, Resilient 
Backpropagation (RPROP) is embedded to the MLPs Neural 
Network to accelerate the training process. For the Data Part, 200 
sets of UserID and Passwords were created and encoded into binary 
as the input. The simulation had been carried out to evaluate the 
performance for different number of hidden neurons and combination 
of transfer functions. Mean Square Error (MSE), training time and 
number of epochs are used to determine the network performance. 
From the results obtained, using Tansig and Purelin in hidden and 
output layer and 250 hidden neurons gave the better performance. As 
a result, a password-based user authentication system for smart home 
by using neural network had been developed successfully. 

Keywords—Neural Network, User Authentication, Smart Home, 
Security

I. INTRODUCTION

ECENTLY there are a lot of criminals happening 
especially at residential areas. This shows that the 
security systems available in the market are not powerful 

enough. For an example, the security system can be easily 
hacked. Besides, the security system and the door lock are 
separated. Hence, the intruders can still break in without 
knowing the password for the security system. Therefore, a 
more powerful security system is required for the home safety.  

Password-based user authentication is inexpensive and 
affordable. Currently most of the password-based user 
authentication systems are still using a table to keep the 

username and password of the authorized users. However, this 
password table has a potential threat that the passwords may 
be read or altered by an intruder.  

A. Joseph is with the Universiti Malaysia Sarawak, Faculty of Engineering, 
Electronic department , 93400, Kota Samarahan, Sarawak, Malaysia(phone: 
6082-583272; fax: 6082-583410; e-mail: jannie@feng.unimas.my).  

D.B.L.Bong is with the Universiti Malaysia Sarawak, Faculty of 
Engineering, Electronic department , 93400, Kota Samarahan, Sarawak, 
Malaysia(phone: 6082-583313; fax: 6082-583410).  

D.A.A.Mat is with the Universiti Malaysia Sarawak, Faculty of 
Engineering, Electronic department , 93400, Kota Samarahan, Sarawak, 
Malaysia(phone: 6082-583295; fax: 6082-583410).  

 The password-based user authentication using neural 
network which is introduced here is harder to be hacked. The 
neural network is used to train (generate and memorize) the 
identification parameters. One of the most well known types 
of neural network is the Multilayer Perceptrons Neural 
Network (MLPs). As a consequence of MLPs required 
hundred or even thousand of epochs to finish, even for a 
simple training since it is using Backpropagation technique, 
Resilient Backpropagation (Rprop) technique will be used to 
accelerate the training epochs in this paper. This was due to 
Backprogation Neural Network required a long time to train 
the nodes [1- 3]. 

By using the Neural Network system, it is safe enough for 
the user to combine the door lock with the security system 
because it is hard for the intruder to hack the system and get 
the UserID and password. Hence, the user does not need a key 
to open the door and no key lost or stolen will occur. 
Furthermore, this system can be applied as the authorization 
system before entering the smart home controlling system. 
Therefore, even the owner lost the hardware to remote access 
the smart home, the person who got it also difficult to access 
the smart home system because it is hard to crack the owner’s 
User ID and password. 

II. LITERATURE REVIEW

A. Resilient Backpropagation (RPROP) 
MLP usually use sigmoid transfer functions in the hidden 

layers, these functions are often called squashing functions 
because they compress an infinite input range into a finite 
output range. Sigmoid functions are differentiated by the fact 
that their slopes must approach zero as the input gets large. 
Therefore, it causes a problem when a steepest descent is used 
to train a multilayer network with sigmoid functions, due to 
the gradient can have a very small magnitude and, hence, 
cause small changes in the weights and biases, even though 
the weights and biases are far from their optimal values. 

In order to eliminate these harmful effects of the 
magnitudes of the partial derivatives, the Resilient 
backpropagation (Rprop) training algorithm is introduced. 
Only the sign of the derivative is used to determine the 
direction of the weight update; the magnitude of the derivative 

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1430International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



gives no effect on the weight update. The size of the weight 
change is determined by a separate update value. The update 
value for each weight and bias is increased by a factor 
delt_inc whenever the derivative of the performance function 
with respect to that weight has the same sign for two 
successive iterations. The update value is decreased by a 
factor delt_dec whenever the derivative with respect to that 
weight changes sign from the previous iteration. If the 
derivative is zero, then the update value remains the same. 
Whenever the weights are oscillating, the weight change is 
reduced. If the weight continues to change in the same 
direction for several iterations, then the magnitude of the 
weight change increases. 

Rprop is generally much faster than the standard steepest 
descent algorithm. It also has the nice property that it requires 
only a modest increase in memory requirements. The update 
values for each weight and bias are required to store, which is 
equivalent to storage of the gradient [4]. 

B. User Authentication 
User Authentication is the process of determining that a 

user is who he/she claims to be. Usernames and passwords are 
the most common form of authentication in use today. Inspire 
of the improved mechanisms over which authentication 
information can be carried, most systems usually require a 
password as the token against which initial authorization is 
performed. Due to the conflicting goals that good password 
maintenance schemes must meet, passwords are often the 
weakest link in authentication architecture. This can be only 
partially addressed by technical remedies. The implementation 
of authentication systems should measure risks and benefits 
against an appropriate threat model and protection target. 

Usernames have few requirements for security that some 
basic restriction should be implemented in the system. 
Usernames that are derivations of a real name or actual real 
names can clearly give personal detail clues to an attacker.  

Password quality refers to the entropy of a password and is 
necessary to ensure the security of the users' accounts. A good 
password is a password that is impossible to guess by other 
people. The password is suggested should at least contain 8 
characters, one alphanumeric, one mixed case and at least one 
special character (not A-Z or 0-9) [1- 3, 5].

III. PASSWORD-BASED USER AUTHENTICATION
DEVELOPMENT

 The development of password-based user authentication 
consists of three main parts which are user registration phase, 
user sign in phase, and user authentication phase. User 
registration phase is link to user sign in phase and user sign in 
phase is connected to user authentication phase. Training of 
the data is done after the users have registered the User ID and 
password, and before the users are able to login the system. 
The flowchart for developing the whole system is shown in 
Figure 1. 

Start

User Register Phase

Train the registered User ID 
and Password 

Direct encode the User 
ID

Result

Simulate using the encoded User ID and 
compare simulated output with encoded 

Password

User Sign In phase

Fig. 1 Flowchart of Password-based User Authentication 
Development 

A. Data Collection  
 Before the process of training the neural network model, the 

data of the users such as User ID and password are collected. 
There are 200 sets of User ID and Password were used as the 
training set while 85 sets were used as testing set to test the 
output of the simulation, where 55 sets were correct User ID 
and Password, 15 sets were correct User ID with wrong 
Password and 15 sets were Wrong User ID with correct 
Password.

A few factors are taken into consideration before collecting 
the data. First, the format of the data is taken into 
consideration. The data format is suggested to use 
alphanumeric and symbols because it is required in order to 
have a “strong password” which is harder to crack. However, 
considering the dimension of the hardware which is built to 
accommodate so many characters, it was decided that the 
input is limited to alphanumerical only. Hence, users can only 
either choose from the 26 alphabets (A-Z, a-z) or the 10 
numbers. 

Secondly, how the user is going to enter the data into the 
system is considered. In this paper, a basic Graphical User 
Interface (GUI) is built for User Registration Phase and User 
Login Phase. The interface consists of username, password, 
register and login.  

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1431International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



Finally, the number of sets of UserID and passwords need to 
be determined (i.e. 200 sets of UserID and passwords). The 
numbers of data should be adequate for the training and 
testing purpose [1-3, 5].   

B. Data Conversion  
The information input by the user (User ID and Password) 

will be in the form of alphanumerical because this type of 
password is harder to be cracked. However, neural network 
can only recognize the numerical data; therefore, the 
alphanumerical data was required to convert into binary form.  

The data keyed in by the users will first save to a text file. 
Then the data will be converted to binary since the range of 
input and output value for neural network is 0 to 1. The 
username and password had to be normalized before the BPN 
training. Every single alphabet, number and symbol was 
assigned to 7 bits binary code. For an example, the User ID 
key in by user is Ace. The binary code will be 1000001 
1100011 1100101.

C. Neural Network Implementation 
The first step for MLPs neural network implementation is to 

setup the feed-forward backpropagation neural network. 
Before training the network, the network is initialized. The 
network is ready for training once the network weights and 
biases are initialized. A set of examples of proper network 
behavior is required for the training process - network inputs p 
and target outputs t.  

Furthermore, the network performance was measured using 
Mean Square Error (MSE). In the training phase, local 
adaptive technique called R-prop is embedded to the MLPs 
Neural Network to accelerate the training process since the 
conventional way to train the network using Backpropagation 
(BPN) requires a long training time. 

D. User Authentication 
        For user authentication part, the server trained BPN to 
authenticate the login user whether is a legal user or intruder 
when it receives the login request. The authentication process 
is described as follows. The process of user login and 
authentication is shown in Figure 2. 

1)   The server encoded User ID and Password. 
2)   The User ID was entered the server products an output   

through the trained BPN. 
3)  The output was compared with the encoded password by 

the server. The login user was allowed to access (i.e. the 
door will be unlocked or enter the system) if the result was 
positive. On the other hand, if the result is negative, the 
login user will be treated as an intruder (i.e. cannot enter 
the door or system) [1- 3]. 

Fig. 2 The processes of login and user authentication phases 

IV. RESULTS, ANALYSIS AND DISCUSSION

 The performance of training time and numbers of epoch of 
RPROP learning algorithm are compared base on different 
number of samples, different hidden units and different 
transfer functions used for hidden layer and output layer. Two 
combinations of transfer function for hidden layer and output 
layer were carried out. First, Tansig was applied to hidden 
layer and Purelin was applied to output layer (Combination 
A). Secondly, Logsig and Purelin were applied to hidden and 
output layer respectively (Combination B). 

Training performance graph and linear regression graph 
were observed each time after the program been executed. The 
simulation output was compared with the actual target. 
Besides, Mean Square Error (MSE) of the simulation was also 
observed in order to get the best performance. 

Training process was standardized to execute for ten 
simulations in order to obtain the average result for the 
simulation. This was due to every training process would give 
vary performance and training time. The scenario happened 
because MLPs neural network used random weight 
initialization. The initial weights and bias are different for 
every training, hence, every training would have different 
results [6]. 

A. Compare the Performance of Different Hidden Neurons 

The overall performance of different hidden neurons applied 
to the hidden layer was observed by using 150, 200, 250, 300, 
350 and 400 hidden neurons. The simulations were carried out 
by using 200 training sets.  

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1432International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



1. Mean Square Error (MSE) 

 The MSE results obtained from using different number of 
hidden neurons for Combination A and Combination B were 
shown in Table I and Table II respectively. The graph plotted 
for average MSE results with different number of hidden 
neurons were shown in Figure 3 (Combination A) and Figure 
4 (Combination B). 

TABLE I 
MSE WITH DIFFERENT NUMBER OF HIDDEN LAYER 

(COMBINATION A)

MSE Results with Different Number of Hidden Neurons

0.00097

0.000975

0.00098

0.000985

0.00099

0.000995

150 200 250 300 350 400

No. of Hidden Neurons

M
S

E

Fig. 3 MSE with Different Number of Hidden Neurons 
(Combination A) 

TABLE II 
MSE WITH DIFFERENT NUMBER OF HIDDEN LAYER 

(COMBINATION B)

MSE Results with Different Number of Hidden Neurons

0.000970
0.000980

0.000990
0.001000

0.001010
0.001020

0.001030
0.001040

150 200 250 300 350 400

No. of Hidden Neurons

M
SE

Fig. 4 MSE with Different Number of Hidden Neurons 
(Combination B) 

The performance of training for Tansig and Purelin using 
different number of hidden neurons was considered good as 
they were able to reach the goal set for training. The 
difference of MSE using different number of hidden neurons 
to train the network was small. The average MSE results 
obtained were below 0.001 which the generated output would 
be identical to the target. 55 sets of trained UserID were 
chosen randomly and used as input for testing the simulated 
output; all the 55 sets were able to provide identical value as 
the target. Therefore, using Tansig and Purelin as the transfer 
functions for hidden and output layer were able to provide a 
very good output. 

 The performance of Logsig and Purelin as transfer function 
for hidden and output layer was consider good, the average 
MSE results were around the performance goal set. However, 
there were two average MSE results were slightly above 
0.001, which were implementing 200 hidden neurons and 350 
hidden neurons. The best MSE result was provided by using 
150 hidden neurons which was 0.00099. By using 350 hidden 
neurons, it gave the highest MSE (0.001029). The overall 
MSE result still considered stable because increasing the 
number of hidden neurons did not cause fluctuation in the 
MSE result. 

2. Training Time 

 Table III and Table IV showed the training time using 
different number of hidden neurons for Combination A and 
Combination B respectively. The average training time taken 
using different number of hidden neurons for Combination A 
and Combination B were shown in Figure 5 and Figure 6. The 
training time also stated in minute and second (min:sec). 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1433International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



TABLE III 
TRAINING TIME WITH DIFFERENT NUMBER OF HIDDEN LAYER 
(COMBINATION A)

Training Time with Different Number of Hidden Neurons

0:00

0:28

0:57

1:26

1:55

2:24

150 200 250 300 350 400

No. of Hidden Neurons

Tr
ai

ni
ng

 T
im

e

Fig. 5 Training Time with Different No. of Hidden Neurons 
(Combination A) 

TABLE IV 
TRAINING TIME WITH DIFFERENT NUMBER OF HIDDEN LAYER 
(COMBINATION B) 

Training Time with Different Number of Hidden Neurons

0:00

0:28

0:57

1:26

1:55

2:24

150 200 250 300 350 400

Training Time 

 N
o.

 o
f H

id
de

n 
Ne

ur
on

s

Fig. 6 Training Time with Different No. of Hidden Neurons 
(Combination B) 

 For Combination A, the training time decreased as the 
number of hidden neurons increased. When the number of 
hidden neurons was increased from 150 to 200, the average 
training time reduced from 1 min 59 sec to 49 sec which was a 
difference of 1 min 10 sec. However, when the number of 
hidden neurons was increased from 300 to 350 and 350 to 
400, the average training time only decreased 4 sec and 2 sec 
respectively.

 The training time versus number of hidden neurons for 
Combination B was observed. The average training time also 
decreased as the number of hidden neurons increased. The 
biggest drop was when adding the hidden neurons from 150 to 
200, the training time decreased from 2 min 3 sec to 50 sec (1 
min 13 sec reduced). However, after 250 hidden neurons, the 
increase of number of hidden neurons did not reduce the 
training time much. When increased the hidden neurons from 
350 to 400, the training time only reduced by 1 sec. 

 Although the difference of the training time for both 
Combination B and Combination C was not large, the training 
time for using Tansig and Purelin as transfer function for 
hidden layer and output layer was slightly shorter comparing 
to using Logsig and Purelin as transfer function for hidden 
layer and output layer. 

3. Number of Epochs 

The number of epochs used to train the network by using 
different number of hidden neurons was recorded into Table V 
and Table VI for Combination A and Combination B 
respectively. Figure 7 and Figure 8 were the average number 
of epochs put into graph for analyzing the trend of increasing 
number of hidden neurons for both Combination A and B. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1434International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



TABLE V 
NO OF EPOCHS WITH DIFFERENT NUMBER OF HIDDEN LAYER 
(COMBINATION A) 

Number of Epochs with Different Number of Hidden Neurons

0
200
400
600
800

1000
1200
1400
1600

150 200 250 300 350 400
No. of Hidden Neurons

N
o.

 o
f E

po
ch

s

Fig 7 No. of Epochs with Different Number of Hidden 
Neurons(Combination A) 

TABLE VI 
NO OF EPOCHS WITH DIFFERENT NUMBER OF HIDDEN LAYER 
(COMBINATION A) 

No. of Epochs with Different Number of Hidden Neurons

0
200
400
600
800

1000
1200
1400
1600

150 200 250 300 350 400

No. of Hidden Neurons

N
o.

 o
f E

po
ch

s

Fig 8 No. of Epochs with Different Number of Hidden 
Neurons(Combination B) 

 For Combination A, the number of epochs during the 
training decreased as the number of hidden neurons was 
increased. By using 150 hidden neurons, 1349.6 of epochs 
were required to train the network. The least number of 
epochs used to train the network was 124.6 of epochs by 
implementing 400 hidden neurons. The number of epochs 
dropped from 1349.6 to 496.6 when the number of hidden 
neurons increased from 150 to 200. However, after 250 
hidden neurons, increasing the number of hidden neurons was 
only able to slightly reduce the number of epochs. 

For Combination B, the number of epochs during the 
training also decreased as the number of hidden neurons was 
increased. Applying 150 hidden neurons gave the greatest 
number of epochs which was 1440.6. On the other hand, 400 
hidden neurons gave the least number of epochs which was 
130.6. The effect on the number of epochs by increasing 
number of hidden neurons was the same as the effect on the 
training time. The biggest drop was when increased the 
number of hidden neurons from 150 to 200, the number of 
epochs dropped from 1440.6 to 547.4. After that, the 
increased on number of hidden neurons reduced less and less 
number of epochs. 

By comparing the overall results of MSE results, training 
time and number of epochs of the training, it was observed 
that by using Tansig and Purelin as the transfer function for 
hidden and output layer respectively provide the optimum 
training. Besides, using 250 hidden neurons gave the best 
MSE performance 0.000979 and the training time was 30 sec 
which was also acceptable. Applying 250 hidden neurons was 
chosen instead of applying 400 hidden neurons though 400 
hidden neurons required only 16 sec to train the network 
because the difference was only 14 sec. Furthermore, using 
400 hidden neurons might be too complex for the network and 
the required large memory to do the training. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1435International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



B. The Overall Phases for Password-based User 
Authentication 

The overall phases for the password-based user 
authentication consists of user registration phase, user sign in 
phase and user authentication phase. The three parts were 
further discussed in the sections below. 

1. User Registration Phase 

 Figure 9 showed the interface for user registration. The user 
will register the User ID and password at the user registration 
interface.

Fig. 9 User Registration Interface 

 The User ID and password will be stored in a text file 
before all the registrations were completed. Every time when 
the user clicked the button “SUBMIT”, the data stored in the 
text file was encoded into binary and being trained. The users 
were limited to choose a maximum of eight characters for 
their User ID and password. The reason for limiting the 
number of characters was to fix the dimension for the input 
and target.  

2. User Sign In Phase 

 The User Sign In Interface was shown in Figure 10. User 
was required to key in User ID and password before login the 
system. 

Figure. 10 User Sign in Interface 

 When the ‘SUBMIT” button was clicked, the User ID 
and password were encoded and request were sent to user 
authentication phase to determine the legality of the user. 

3. User Authentication Phase 

 At the user authentication phase, the legitimacy of the login 
user was determined. The encoded username was entered to 
the trained network and produced an output. The output would 
be compared with the encoded password. If the output 
matched with the encoded password, the user will be 
recognized and able to login the system. The result for a legal 
user was shown in Figure 11. On the other hand, if the output 
of the network did not match with the encoded password, the 
user will be rejected. The result for an illegal user was shown 
in Figure 12. 

Fig. 11 User Login Successful Interface 

Fig. 12 User Login Failed Interface 

C. Discussions

From the result obtained, it showed that the trained 
feedforward backpropagation neural network using RPROP as 
training function generates outputs that are exactly identical to 
the targets. Hence, it was proved that the authentication 
system had provided a good accuracy. During the testing, the 
same training pattern was used to test the trained network. If 
the right User ID was input to the trained network, the output 
was the corresponding Password. This was due to the 
registered User ID and Password had been used in the 
training. Therefore, the error of the generated output would be 
very small which was very close to the actual Password. On 
the other hand, if User ID which was not trained 
(unauthorized) was input to the network, the generated output 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1436International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f



would not be accepted as it would not be equal to the existing 
Password. Furthermore, if the User ID entered was an 
authorized User ID but the password entered was wrong, the 
user will not be able to enter the system too because the 
generated output does not match the entered password. 

 The difficulty of inverting the test pattern to the original 
password determined the security of the system. Hence, an 
intruder cannot easily derive the secret password from the test 
pattern even if the weights of the trained network were 
obtained by the intruder.  

Furthermore, the training time required to train the data was 
much shorter comparing to the conventional BPN method [5, 
7]. By embedding RPROP, the system only require 30 sec to 
train the network to train 200 training sets. Note that the input 
pattern of this system was also digital data (0 or 1).  

        Besides, unlike public key cryptography which required 
exponential computing, the process of this BPN only requires 
simple multiplication and addition to obtain the result [5]. 
Hence, when a user wants to enter the house or the smart 
home system, the system could response with the result either 
to accept or reject the user’s request. 

V. CONCLUSION
 A password-based user authentication system for smart 
home by using neural network had been developed 
successfully. A local adaptive learning algorithm, Rprop, has 
been embedded to train the network. From the result obtained 
in section IV, it is observed that the implementing Tansig in 
the hidden layer and Purelin in the output layer give optimum 
results. Besides, it is observed that as the number of hidden 
neurons increased, the training time and number of epochs to 
train the network increased proportionally. However, the 
number of hidden neurons do not influence much on the MSE 
results because this is a pattern recall system. 

 The use of neural networks has been applied to eliminate 
the disadvantages of maintaining the conventional verification 
table for user authentication system. BPN is the method being 
employed to recall the relationship of User ID and Password 
that had been registered. The corresponding Password can be 
easily obtained according the input User ID by using this 
method. Hence, it could be used to replace the verification 
table stored in the system.  

 Furthermore, only simple and quick computation operations 
are required to produce the result instead of complex 
calculation as in public key cryptography. Therefore, users do 
not need to wait for a long time for the authentication system 
to response. 

 The advantage of embedding a local adaptive technique, 
Rprop, is that the training time is very short. Hence, the long 
training time of applying MLP – BPN in authentication 
system can be solved. 

ACKNOWLEDGMENT

This work was supported by the Universiti Malaysia Sarawak 
(UNIMAS) of Malaysia.  

REFERENCES

[1] I.C.Lin,H.H. Ou, M.S. Hwang,  “A user Authentication System using 
Back-propagation Network,”  Neural Comput & Applic, June 2005 

[2] U. Manber, “A Simple Scheme to make Passwords Based on One Way 
Functions Much Harder to Crack”,Nov 2000

[3] S.Z. Reyhani, M. Mahdavi, “User Authetication Using Neural Network 
in Smart Home Networks,” International Journal of Smart Home, Vol 1 
no 2,pp147, July 2007.

[4] H. Demuth, M.Beale, M.Hagan, “ Neural Network ToolboxTM User
Guide: Faster Training,” Natick: The MathworksTM Inc, 2008. 

[5] M. Curphey, A Guide to Building Secure Web Application, The Open 
Web Application Security Project (OWASP), Boston, USA, 2002.. 

[6] A. Pavelka, A.Proch’ azka, “ Algorithm  for Initialization of Neural 
Network weights, Institute of Chemical Technology, department of 
Computing and Control Engineering. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1437International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

24
2.

pd
f




