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Abstract—An analog restricted Hopfield Network is presented in
this paper. It consists of two layers of nodes, visible and hidden
nodes, connected by directional weighted paths forming a bipartite
graph with no intralayer connection. An energy or Lyapunov function
was derived to show that the proposed network will converge to
stable states. By introducing hidden nodes, the proposed network
can be trained to store patterns and has increased memory capacity.
Training to be an associative memory, simulation results show that the
associative memory performs better than a classical Hopfield network
by being able to perform better memory recall when the input is noisy.

Keywords—Associative memory, Hopfield network, Lyapunov
function, Restricted Hopfield network.

I. INTRODUCTION

IN 1982, based on studies of collective dynamical

computation in neural networks, Hopfield [1], [2], [3]

proposed an influential recurrent neural network that has many

potential applications such as content addressable memory

and optimization engine for the traveling-salesman problem.

He formulated an Energy function for the network using the

Lyapunov Direct Method showing that the network converges

to a stable state if the network has symmetric weights and

each network node does not have self-feedback.

Hopfield network comes in two forms: analog or discrete.

However, in either form, the network can only be programmed

to memorize patterns using Hebbian Rule and has a limited

memory capacity of storing 0.15N patterns where N is the

number nodes in the network. Many have tried to improve

the memory capacity problem and trainability issue of the

network [4], [5]. For example, instead of trying to memorize

the patterns in one presentation cycle, Gardiner [6], [7],

[8] improved the network performance to be an associative

memory by presenting the training patterns repeatedly and

using the perceptron convergence procedure to train each node

to generate the correct state given the states of all the other

nodes for a particular training vector.

A typical Hopfield network can only be programmed in

one shot to memorize patterns using Hebbian Rule and has

a limited memory capacity. An analog restricted Hopfield

network (RHN) is proposed in this paper to solve the problem

of memory capacity and the trainability issue of the Hopfield

network. Similar to a Restricted Boltzmann Machine (RBM)

[9], [10], [11], the architecture consists of two layers of nodes,

visible and hidden nodes, connected by directional weighted

paths. The network is a fully-connected bipartite graph and has

no intralayer connection. The visible nodes are classified into
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either input or output nodes to manage the flow of information

to/from the visible nodes.

An energy or Lyapunov function was derived to prove that

the proposed network always converges to stable states. When

an input vector is presented to the network, the proposed

network iterates, sending signals back and forth between the

two layers until all its nodes reach an equilibrium state based

on the corresponding basin of attraction, generating the desired

output vector.

The proposed network can be trained using the

Simultaneous Perturbation Stochastic Approximation (SPSA)

algorithm which was introduced by Spall in 1996 [12], [13].

The algorithm is simple to implement because the gradient

of the error function can be estimated using only two final

error values measurement.

Deploying hidden nodes and a modified network structure,

simulation results show that the proposed network can be

trained to store patterns and has increased memory capacity.

Acting as an associative memory, simulation results show that

the proposed network can be trained to store many images.

The proposed network performs better memory recall than a

classical Hopfield network when the input is noisy.

II. HOPFIELD NETWORK

An analog Hopfield network consists of fully interconnected

nodes modeled as amplifiers, in conjunction with feedback

circuits comprises of wires, resistors, and capacitors, as shown

in Fig. 1.

Fig. 1 An analog Hopfield network

The dynamics of the network can be described by the

following differential equations:
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dui

dt
=

N∑
j=1

TijVj − ui

τ
+ Ii

τ = RC

Vi = g(ui)

(1)

where N is the number of nodes in the network, ui is the

input voltage of the amplifier, Tij is the weight or conductance

connecting the output of node j to the input of node i, Vj is

the output of node j, RC is the time constant of the network,

Ii is the input to node i, and g() is the output function of a

node.

The following energy function for the network was derived

by Hopfield using the Lyapunov Direct Method if the network

has symmetric weights and each network node does not have

self-feedback. For the initial-value problem, Ii input is applied

to node i at t = 0 and then allow the network to evolve.

The integration of the above differential equations provides

the evolution of the network states. With the existence of the

energy function, the network will always converge to a stable

state.

E = −1

2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

Vi
ui

τ
−

N∑
i=1

ViIi (2)

Hopfield networks can only be programmed to memorize

patterns using the Hebbian Rule. When the output function

g() is a sigmoid function, the network transforms the initial

input vector iteratively and continuously into the output vector

in the range [0, 1]. To program the network to memorize

certain binary input vectors (S(p), p = 1..P ), the weight or

conductance Tij is determined by the following formula:

Tij =

p∑
p=1

(2Si(p)− 1)(2Sj(p)− 1) (3)

When the output function g() is a hyperbolic tangent

function, the network transforms the initial input vector

iteratively and continuously into output vector in the range

[−1, 1]. To program the network to memorize certain binary

input vectors (S(p), p = 1..P ), the weight or conductance Tij

is determined by the following formula:

Tij =

p∑
p=1

Si(p)Sj(p) (4)

III. PROPOSED RHN (RESTRICTED HOPFIELD NETWORK)

To solve the problem of memory capacity and trainability

issues of the Hopfield network, an analog restricted Hopfield

network (RHN) is presented. The architecture, as shown in

Fig. 2, consists of two layers of nodes, L visible and M hidden

nodes, connected by directional weighted paths. The network

is a connected bipartite graph and has no intralayer connection.

Fig. 2 Proposed Restricted Hopfield Network with hidden and visible nodes

The dynamics of the network can be described by the

following differential equations:

In the forward path:

duH
i

dt
=

L∑
j=1

wH
ijV

V
j + θHi

V H
i = g(uH

i )

(5)

where uH
i is the sum of all inputs to the hidden nodes, wH

ij

is the weight connecting the output of visible node j to the

input of hidden node i, V V
j is the output of visible node j, θHi

is the threshold of hidden node i, V H
i is the output of hidden

node i, g() is the output function of hidden node I , and Ij is

the initial input to the visible node j.

In the backward path:

duV
i

dt
=

M∑
j=1

wV
ijV

H
j + θVi

V V
i = g(uv

i )

(6)

where uV
i is the sum of all inputs to the output nodes, wV

ij

is the weight connecting the output of hidden node j to the

input of output node i, V H
j is the output of hidden node j, θVi

is the threshold of output node i, V V
i is the output of output

node i, and g() is the output function of output node i.
Initial conditions of the network are:

V V
j (0) = Ij

V H
i (0) = 0

(7)

The input to the network can be either digital or analog

taking value between 0 and 1. Using a sigmoid function

as output function g() for all the nodes, the output of all

the nodes takes the value between 0 and 1. Note that the

proposed network will also work with hyperbolic tangent

output function. The proposed RHN always generates analog

outputs between 0 and 1 using sigmoid output function or

between -1 and 1 using the hyperbolic tangent output function.
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Threshold units can be deployed to obtain digital outputs, as

shown in Fig. 2.

Using the Lyapunov Direct Method, it can be shown that

the following equation is the energy or a Lyapunov function

of the proposed network in Fig. 2 if and only if all weights

are symmetric. Due to lack of space, the derivation will not

be shown.

E = −1

2

M∑
i=1

L∑
j=1

wH
ijV

H
i V V

j − 1

2

L∑
j=1

M∑
i=1

wV
jiV

H
j V V

i

−
M∑
i=1

V H
i θHi −

L∑
i=1

V V
i θVi

(8)

The proposed RHN is a dynamic system. Therefore, it

has attractors toward which a system tends to evolve, for a

wide variety of initial conditions of the system. There exists

a basin of attraction for each attractor such that any initial

condition in that region will eventually be iterated into the

corresponding attractor. When an input vector is presented to

the input nodes and the input vector is in a certain basin of

attraction, the proposed network sends signals back and forth

between the hidden and visible layers until all its nodes reach

an equilibrium state or the corresponding attractor based on

minimizing the energy function above, generating the desired

output vector.

IV. TRAINING OF PROPOSED RHN

Conventional Hebbian rule as mentioned earlier ((3) and (4))

is not suitable for training the proposed network because the

outputs of the hidden nodes are not known and the equations

cannot handle analog quantities.

In many applications, the ideal or desired outcome for the

network is known. Using this information, we can evaluate

how well the network performs. The evaluation gives us a

clue in terms of how to optimize the weights of the network.

Therefore, the backward-error-propagation (BEP) through time

method can be used to train the proposed RHN by propagating

the error quantity through time from a stable state to an

initial state. However, it is difficult to apply the method

directly, because it is complicated to compute the gradient

corresponding to all of the weights in every time step.

The simultaneous perturbation stochastic approximation

(SPSA) algorithm uses a gradient approximation that requires

only 2N objective function measurements over all N iterations

regardless of the dimension of the optimization problem

[9], [10]. Therefore, the SPSA algorithm, as shown in

the following formulae, is suited for a high-dimensional

optimization problem of minimizing an objective function

dependent on multiple adjustable weights.

Δwij(k)

=
J(W (k) + c(k)Δ(k))− J(W (k)− c(k)Δ(k))

2c(k)Δij(k)

(9)

wij(k + 1) = wij(k)− a(k)Δwij(k) (10)

At each iteration, a simultaneous perturbation delta vector

with mutually independent zero-mean random variables is

generated; each element Δij(k) in Δ(k) matrix is generated

with a probability of 0.5 of being either +1 or -1. Two

weight matrices W+ and W− are calculated by adding and

subtracting the Δ(k) matrix scaled by gain sequence c(k)
to/from the current weight matrix W (k) to compute their

respective contributions J(W+) and J(W−) to the objective

function. Dependent on the outcome of the evaluation and

scaled by gain sequences a(k) and c(k), the current weight

matrix W is updated accordingly. The gain sequences a(k)
and c(k), decrease as the number of iterations k increases,

will converge to 0 as k approaches ∞.

The objective function J used for the optimization of the

proposed RHN is:

J =

P∑
i=1

B∑
j=1

(D̂ij − V o
ij(k))

2 (11)

where D̂ij is the jth element of the desired output vector i,
V o
ij(k) is the output value of the jth output node when training

pattern i is presented, B is the number of output nodes, and

P is the number of training patterns.

V. SIMULATION RESULTS

A. Comparison of Hopfield Network and RHN

Let us consider storing 3 vectors ([1 1 0 0], [0 1 1 0],

[0 1 0 1]) in a Hopfield network. Hopfield network can be

programmed to memorize these three vector patterns using

Hebbian Rule and the weight matrix is:

⎡
⎢⎢⎣

0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 −1 −1 1
−1 0 1 −1
−1 1 0 −1
1 −1 −1 0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 −1 1 −1
−1 0 −1 1
1 −1 0 −1
−1 1 −1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

⎤
⎥⎥⎦

The weight matrix will generate the correct output vector

when the corresponding input vector with noise is provided.

Let us consider storing the fourth vector [1 1 1 1] in the

network. The weight matrix to store vector [1 1 1 1] is:

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

Adding this weight matrix to the previous weight matrix

of the Hopfield network programmed to store 3 vectors ([1

1 0 0], [0 1 1 0], [0 1 0 1]) yields a weight matrix with

zero elements, erasing all the previous programming, as shown

in the following. Therefore, the Hopfield network cannot be

programmed to remember all four vectors ([1 1 0 0], [0 1 1

0], [0 1 0 1], [1 1 1 1]) using Hebbian rule.
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⎡
⎢⎢⎣

0 −1 −1 −1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

However, by introducing 5 hidden nodes in the proposed

RHN, all four-vectors can be easily stored and recalled

correctly. This shows that it is possible to increase the memory

capacity of the Hopfield network by using more hidden nodes.

In fact, by increasing the number of hidden nodes to 20, the

proposed network can remember all 16 binary vectors.

B. Associative Memory

An RHN with 35 visible nodes and 10 hidden nodes is

created. The network is then trained to memorize the A, U, T,

S characters, each with 5 × 7 binary pixels. To test whether

the network can re-create the images of these characters in the

presence of noise, the input images are distorted by changing

some of the pixels measured in Hamming distance.

Shown in Figs. 3 and 4 are distorted images of A, U, T, S

on the left of the figures and the re-created images of these

characters on the right. The figures show that the network

is able to perform perfect re-creation of these images even

when distorted character images with hamming distance of 5

is presented.

Fig. 3 Distorted images of A and U on the left and the recreated images on
the right

Fig. 4 Distorted images of T and S on the left and the recreated images on
the right

A Hopfield Network with 35 nodes was also created and

programmed to store the same images of characters A, U,

T, S. To compare whether both networks can re-create the

images of these characters in the presence of noise, the input

images are distorted by randomly changing some of the binary

pixels measured in Hamming distance. Using 1,000 images per

character, Fig. 5 shows the percentage error of both networks

for not re-creating the images perfectly. The RHN can perform

perfect re-creation of the training images with an average error

rate of 7% when the Hamming distance is 8. A classical

Hopfield network can only achieve 16% error rate with the

same Hamming distance.

Fig. 5 Performance comparison of Hopfield Network and RHN both
functioning as an associative memory to store images of A, U, T, S

characters

A RHN with 35 visible nodes and 50 hidden nodes was
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trained to store 10 7 × 5 binary pixels of numerical digits.

Using a total of 10,000 distorted images, simulation results

show that the RHN can re-create these images with an average

error rate of 14% when the Hamming distance is 5, as shown

in Fig. 6.

Fig. 6 Performance comparison of Restricted Hopfield Network as
associative memory for 0 9 numbers

A RHN with 35 visible nodes and 50 hidden nodes was

trained to store 26 7 × 5 binary pixels of A to Z alphabets.

Using a total of 26,000 distorted images, simulation results

show that the RHN can re-create these images with an average

error rate of 23% when the Hamming distance is 5, as shown

in Fig. 7.

Fig. 7 Performance comparison of Restricted Hopfield Network as
associative memory for A Z characters

VI. CONCLUSIONS

An analog restricted Hopfield Network is presented in

this paper. A Lyapunov function was provided to show that

the proposed network will converge to stable states. By

introducing hidden nodes, the proposed network can be trained

to store patterns and has increased memory capacity. Acting as

an associative memory, simulation results show that the RHN

can be trained to store many images. The proposed network

performs better memory recall than a classical Hopfield

network when the input is noisy.
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