
 
 

 

 
Abstract—To claim the ownership for an executable program is a 

non-trivial task. An emerging direction is to add a watermark to the 
program such that the watermarked program preserves the original 
program’s functionality and removing the watermark would heavily 
destroy the functionality of the watermarked program. In this paper, 
the first watermarking signature scheme with the watermark and the 
constraint function hidden in the symmetric key setting is constructed. 
The scheme uses well-known techniques of lattice trapdoors and a 
lattice evaluation. The watermarking signature scheme is unforgeable 
under the Short Integer Solution (SIS) assumption and satisfies other 
security requirements such as the unremovability security property.  
 

Keywords—Short integer solution problem, signatures, the 
symmetric-key setting, watermarking schemes.  

I. INTRODUCTION 

HE notion of watermarking is influential for digital rights 
management, such as tracing information leaks or 

resolving ownership disputes. There are numerous works, for 
example [1], [2], on watermarking pictures, music files, 
movies, or other perceptual objects. On the other hand, it is not 
trivial how to watermark an executable program. The difficulty 
was formally illustrated in [3], [4]. They showed that no 
watermarking scheme can be constructed for any program such 
that the watermarked program behaves identically to the 
original program even assuming the existence of a powerful 
indistinguishable obfuscator (the IO assumption). But if we can 
sacrifice the perfect correctness, [5] showed that assuming the 
existence of an indistinguishable obfuscator, watermarking 
pseudorandom functions, signatures and encryption schemes is 
possible if we allow the watermarked programs behave 
differently from the original programs with a negligible 
fraction of the whole domain. 

Based on Cohen et al.’s work [5] and other previous studies 
[9]-[12], we we can have three security requirements for a 
watermarked program. The first one is correctness and 
function-preserving, which requires that the watermarked 
program must behave almost identical to the original one 
except for a few cases with negligible probability, which should 
be unnoticeable to the users. The second one is unremovability. 
Once a program is watermarked, an adversary cannot easily 
remove the watermark while keeping the correctness and 
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function-preserving property1. The third one is unforgeability, 
which means that an adversary cannot forge a valid 
watermarked program which behaves significantly different 
from any original watermarked programs he/she is able to 
access to. 

Most of existing works for watermarking a program were 
done for pseudorandom functions (PRFs) [5], [9]-[12]. Only 
limited results exist on how to watermark other cryptographic 
schemes such as signatures and encryptions. In particular for 
signatures2, there are only two results. Reference [5] proved the 
existence of a watermarking scheme, but the scheme is based 
on the IO assumption and no concrete construction was given. 
The only concrete scheme we can find for signatures is [14]. 
They constructed a watermarking scheme for constrained 
signature schemes (i.e., these signing schemes only sign 
correctly for messages satisfying certain constraints and cannot 
output a correct signature for other messages), but the 
watermark needs to be exposed. Both results allow public 
extraction of the watermark. 

“Public” extraction and “exposed” watermark are useful in 
certain application scenarios such as when a client tries to 
purchase a software (program), it is easy for him to check if the 
copyright owner is the seller or an authorized agent to sell him 
the software. On the other hand, there are also applications that 
we prefer having “private” extraction and “hidden” watermark 
(i.e., no user except the signer can tell if the software has been 
watermarked). For example, hidden watermark can help to 
trace and identify the copyright infringement chain without 
being noticed by the suspects and in some cases, signers may 
want to embed private information into the watermark for 
which they do not want to reveal unless it is really necessary 
such as in a court case to prove the ownership of the program. 
However, to the best of our knowledge, currently there is no 
result in the symmetric key setting 3. 

In this paper, we consider watermarking a signature scheme 
and propose the first watermarking signature scheme in the 
symmetric key setting with a hidden watermark and a hidden 

 
1 Note that in some earlier works [6]-[8], the unremovability property is only 

guaranteed when an adversary is restricted to certain modification 
requirements. 

2  For encryption, there are some results. For example, [13] gave 
constructions for watermarking public-key encryption with unremovability and 
unforgeability security properties. 

3 We also remark that this “watermarking a program" is an important and 
emerging direction. Although no concrete and real applications yet, we believe 
that real applications will follow after the research community has come up 
with effective schemes for different settings. 
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constraint function. Our scheme works for any constrained 
signature schemes. We prove that our watermarking scheme is 
secure against chosen programs attack in which the adversary 
can access the watermarking oracle while the watermarked 
signature scheme is unforgeable. 

Technique overview: Our scheme is under the symmetric 
key setting, in which the key used to watermark the signature 
scheme will be the key for extracting the watermark from the 
scheme, i.e., only the owner who has the correct key can show 
the watermark to prove its ownership. 

For all we know, there is no previous scheme for 
watermarking a signature scheme under the symmetry key 
setting. It is easy to transform the scheme in [14] from “public” 
extraction to “private” extraction as follows. To hide the 
embedded message (which means that the embedded message 
cannot be obtained directly from the signature), we first encrypt 
the embedded message and then encode the resulting ciphertext 
into the signing key. This construction can enable the private 
extraction. But on the other hand, the “exposed” message still 
provides hints to everyone that the program has been 
watermarked. 

Technically, in order to hide both the message and also the 
constraint function, we first borrow the idea of the 
message-embedding method in [9] to create and embed our 
watermark message into the signature scheme. The underlying 
idea is as follows. To encode a message 𝑚𝑠𝑔, we first generate 
a set of points 𝑥 , 𝑥 ∈  where 𝑡  is the length of the 

embedded message 𝑚𝑠𝑔. The subset 𝑥 ∈ , which is set 
of the messages used to encode the embedded message, is set of 
the messages that cannot be correctly signed by a constrained 
signing key. If the set 𝑥 , 𝑥 ∈  is shared by the 
watermarking procedure and the extraction procedure, then for 
an embedded message 𝑚𝑠𝑔, the watermarking procedure can 
change the signatures for messages belonging to the subset 
𝑥 ∈  to encode the message 𝑚𝑠𝑔  into the signature 

scheme. This explains why both this paper and [14] choose a 
constrained signature scheme as an underlying component to 
construct a watermarking signature scheme. And the extraction 
procedure can test every pair of 𝑥 , 𝑥 . If the signature for 𝑥  
is not correct, then 𝑚𝑠𝑔 0; otherwise, 𝑚𝑠𝑔 1. 

Once we know how to encode a message, another difficulty 
is to hide the point set. Otherwise, the adversary can just change 
the signatures for the messages in the point set to remove the 
embedded message. The difficulty is that the hidden points 
must be found later when extracting the embedded message. 
Our solution is to randomize the set 𝑥 ∈  by multiplying 
a secret matrix B and a public matrix A and define the new set 
AB𝑥 ∈  as part of the public verification key. We also 

remark that we cannot use the same point set for two different 
signature schemes as explained in the following. Since the 
point set used for encoding the embedded message must be 
linked to the secret signing key, the point set must be unique for 
every signing key. Suppose that we use the same point set 
encoding messages for signature schemes 𝑆𝑖𝑔  and 𝑆𝑖𝑔 . If 
some points in the set are determined by noticing incorrect 

signatures for a watermarked signature scheme 𝑆𝑖𝑔 , then the 
embedded message cannot be extracted correctly for the 
signature scheme 𝑆𝑖𝑔  since the adversary knows which 
message’s signature should be changed. 

For how we make use of these techniques in the concrete 
construction, please refer to Section IV. The rest of the paper is 
organized as follows: Section II provides some technical 
background knowledge. Section III talks about the constrained 
signature schemes. Section V gives the formal proofs of the 
security of the proposed scheme and Section VI concludes the 
paper. 

Remarks: Another formal definition for watermarking 
schemes can be found in [15]. They formulated the rigorous and 
general security definition for watermarking schemes. Their 
security definition implies other former definitions, while also 
no concrete constructions are given. 

Roughly speaking, our proposed definition is for the case of 
“private” marking and “private” extraction in a symmetric-key 
setting. All previous definitions are defined for the public-key 
setting, either with “public” marking or “public” extraction. 
More precisely, in [5], Cohen et al. define a watermarking 
scheme for a signature scheme by generating a public 
extraction key 𝑥𝑘 and a secret marking key 𝑚𝑘. In other words, 
any signature scheme is watermarked by a marker who 
possesses the secret marking key while anyone else can extract 
the embedded mark or message. Afterwards, Goyal et al. define 
a different watermarking scheme for signature scheme. In their 
work [14], a signature scheme can be marked by anyone (public 
marking) and the embedded mark or message can be extracted 
from the watermarked signature circuit by anyone (public 
extraction). In their extensions, they briefly state how to 
construct a secret marking and public extraction scheme. On 
the other hand, our watermarking scheme definition is 
different. Ours only permits the person who is aware of the 
secret marking or extraction key can execute the marking or 
extraction algorithm. 

Existing works focus on watermarking cryptographic 
programs. A major reason is discussed in [5], in which they 
showed that if a program is learnable, i.e., it is possible for an 
adversary to consider the watermarked program as a virtual 
black box and recover the description of the original program, 
then it is possible for the adversary to construct a program with 
the same functionality without the watermark (for details, 
please refer to [5]), then it is not watermarkable. Most of the 
cryptographic programs are not learnable while many other 
programs belong to the category of learnable programs, thus 
researchers focus on how to watermark a cryptographic 
program. 

II.  PRELIMINARIES 

 Background on Lattices and the SIS Problem A.

Notation. For any integer 𝑞 2, the ring of integers modulo q 
is denoted by ℤ . Elements of ℤ  are represented in the range 

𝑞/2, 𝑞/2  and take their representatives in the range as 
absolute values. For a vector v ∈ ℤ , ∥ v ∥ 𝛽  if each 
component v 𝛽. For a matrix V ∈ ℤ , ∥ V ∥ 𝛽 if each 
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entry V , 𝛽. 
The SIS Problem. Let 𝑛, 𝑚, 𝑞, 𝐵 be integer parameters. In the 
SIS(𝑛, 𝑚, 𝑞 , 𝐵) problem, given a uniformly random matrix 
A ∈ ℤ , the attacker targets to find a vector u ∈ ℤ  with 
𝐮 0  and ∥ u ∥ 𝐵 4  such that A ⋅  u 0. For parameters 
𝑛 𝑛 𝜆 , 𝑚 𝑚 𝜆 , 𝑞 𝑞 𝜆 , 𝐵 𝐵 𝜆  defined in terms 
of the security parameter 𝜆, the hardness assumption of the 
SIS(𝑛, 𝑚, 𝑞, 𝐵) problem states that for any PPT (probabilistic 
polynomial time) attacker 𝒜, 
 

Pr A ⋅  u 0 ∧ ∥ u ∥ 𝐵 ∧ 𝐮 0: A
← ℤ𝑞

𝑛 𝑚, u←𝒜 1λ, A negl λ . 
  
Theorem 1 [16]-[20]. For any 𝑚 poly 𝑛 , 𝐵 0  and 
sufficiently large 𝑞 𝐵 poly 𝑛 , solving SIS , , ,  with 
non-negligible possibility is at least as hard as solving the 
decisional approximate shortest vector problem GapSVP  and 
the approximate shortest independent vectors problem SIVP  
on any 𝑛-dimensional lattice with overwhelming possibility, 
for some 𝛾 𝐵 poly 𝑛 . 
Lattice Trapdoors. Let 𝑛, 𝑞 ∈ ℤ , g 1,2,4, . . . , 2⌈log ⌉

1 ∈ ℤ⌈log ⌉ and 𝑚 𝑛⌈log𝑞⌉. The gadget matrix G g ⊗ I , 
where ⊗ is the tensor product of two matrices. For any 𝑡 ∈ ℤ, 
define G : ℤ → 0,1  mapping each entry of the input 
matrix into a column vector which is the bit decomposition of 
the corresponding entry. For any A ∈ ℤ , it holds that 
G ⋅ G A A. 

As stated in Theorem 1, the SIS , , ,  problem is hard. 
However, with some trapdoor, solving the SIS , , ,  problem 
is tractable for any random matrix A. Moreover, SIS , , ,  
problem is easy to solve for a gadget matrix G. 
Theorem 2 (Trapdoor Generation [16], [21]). Given integers 
𝑛 1, 𝑞 2, and 𝑚 𝑂 𝑛log𝑞 , there exists an efficient 
algorithm A, TA ← TrapGen 1 , 1 , 𝑞 , where A ∈ ℤ  is 
2 -uniform for all 𝑚 𝑚 . Meanwhile, there exists an 
efficient algorithm u ← SamplePre A, TA, v  such that Au v 
and u  follows Discrete Gaussian distribution 𝒟ℤ ,  with 

𝜏 𝑂 𝑛log𝑞log𝑛 . 
Theorem 3 (Trapdoor Extension [21], [22]). Given A ∈ ℤ  
with a trapdoor TA, if there exist two matrices B ∈ ℤ  and 
S ∈ ℤ  with the largest singular value 𝑠 S  such that 
A BS mod𝑞 , then TA  and S  can be used to generate a 
trapdoor TB  for the matrix B . If the output of 
SamplePre A, TA, v  follows a distribution that is not far-from 
the Discrete Gaussian distribution 𝒟ℤ , , then the output 
SamplePre B, TB, v  follows a distribution that is not far-from 
the Discrete Gaussian distribution 𝒟ℤ , , in which 𝜏′
𝜏′𝑠 S . 
Corollary 1. As stated in Theorem 3, set S I |0  
specifically. Given A ∈ ℤ  with a trapdoor TA , for any 

 
4 Usually, the SIS Problem is stated with ℓ  norm rather than ℓ  norm. The 

two statements are equivalent up to some small losses of parameters. ℓ  norm 
is chosen for simplicity. 

B ∈ ℤ , there exists an efficient algorithm A|B , T A|B  
← ExtensionLeft A, TA . If the output of SamplePre A, TA, v  
follows a distribution that is not far-from the Discrete Gaussian 
distribution 𝒟ℤ , , then u  ←  SamplePre  A|B ,  T A|B ,  v  
follows a distribution that is not far-from the Discrete Gaussian 
distribution 𝒟ℤ ,  and 𝜏′ 𝜏. 

Before proceeding to the following corollary, we recall that 
the trapdoor for a gadget matrix G is trivial. 
Corollary 2. As stated in Theorem 3, set S R |I  
specifically. Given matrices A ∈ ℤ  and R ∈ ℤ , there 
exists an efficient algorithm M, TM  ← ExtensionRight A, R, 
G  where M A|AR+G . And u ← SamplePre M, TM, v  
follows a distribution that is not far-from the Discrete Gaussian 

distribution 𝒟ℤ ,  for 𝜏 𝑂 √𝑚𝑚′ ∥ R ∥ . 
In particular, ExtensionRight A, R, G  and SamplePre A 

|AR G , T A|AR G , v  are renamed as SampleRight A, R, v  
in the following. 
Discrete Gaussian Distribution. Let 𝑞 2  be a prime, 
A ∈ ℤ  and u ∈ ℤ . Define 𝛬u A e ∈ ℤ , 𝑠. 𝑡.  Ae

u mod𝑞 . Suppose S  is any matrix, and S  is the 
Gram-Schmidt orthogonalization of S , define ∥ S ∥  
max ∥ s̃ ∥ , …, ∥ s̃ ∥ . 

For any vector x ∈ ℤ  and any 𝑠 0, a Gaussian function 
scaled by a factor 𝑠 is defined by 

 

𝜌 x exp 𝜋 ∥ x ∥ .  
 
For any countable set A and a parameter 𝑠 0, the Discrete 

Gaussian probability distribution 𝒟 , x  is defined as 
 

𝒟 , x
x x

∑y∈ y
.  

 
Lemma 1 [18], [23]. Assume that 𝑞 2 and A ∈ ℤ  with 

𝑚 𝑛. Let TA is a basis for 𝛬 A  and 𝑠 ∥ TA ∥ 𝜔 log𝑚 . 
Then for u ∈ ℝ : 

 

Pr x ∼ 𝒟 u A , : ∥ x ∥ √𝑚𝑠 negl 𝑛 . 
 

Lattice Evaluation. For the following, we cite a theorem from 
[20] directly. The evaluation procedure has been studied in 
many works [21], [22], [24]-[27] relating to LWE-based FHE 
and ABE. The description from [20] is similar to one in [28], 
[29]. 
Theorem 4 (Theorem 3 [20]). For any 𝑛, 𝑞, 𝑡 ∈ ℤ  and 

𝑚 𝑛⌈log𝑞⌉ , let A⃗ ∈ ℤ , 𝑓  be a d-depth Boolean 
circuit 𝑓: 0,1 → 0,1 , and x 𝑥 , 𝑥 , . . . , 𝑥 ∈ 0,1 . 
There exist two efficient algorithms EvalF  and EvalFX  s.t. 

H EvalF 𝑓, A⃗  and H ,x EvalFX 𝑓, x, A⃗  where 
H , H ,x ∈ ℤ . It holds that ∥ H ∥ , ∥ H ,x ∥ 2𝑚  

and A⃗ x ⊗ G ⋅ H ,x A⃗H 𝑓 x G mod𝑞 . 
Lemma 2 [30]. Suppose that 𝑚 𝑛 1 log𝑞 𝜔 log𝑛  and 
that 𝑞 2  is prime. Let R  be an 𝑚 𝑘  matrix chosen 
uniformly in 1,1 mod𝑞  where 𝑘 𝑘 𝑛  is 
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polynomial in 𝑛. Let A and B be matrices chosen uniformly in 
ℤ  and ℤ  respectively. Then, for all vectors 𝒘 in ℤ , the 

distribution A, AR, R 𝒘  is statistically close to the 
distribution A, B,  R 𝒘 . 

III. CONSTRAINED SIGNATURE SCHEMES 

Definition 1 (Constrained Signatures [20]). A constrained 
signature scheme consists of four algorithms 𝛱  
CS.Setup, CS.KeyGen, CS.Sign, CS.Verify  over an attribute 
space 𝒳, a signature space 𝒴, and a circuit class 𝒞 is defined 
as: 
 CS.Setup 1 → 𝑣𝑘, 𝑚𝑠𝑘 . CS.Setup is the initialization 

algorithm that on input the security parameter 𝜆, output a 
master secret key 𝑚𝑠𝑘 and a verification key 𝑣𝑘. 

 CS.KeyGen 𝑚𝑠𝑘, 𝑓 → 𝑠𝑘 . On input the master secret 
key 𝑚𝑠𝑘  and the constraint circuit 𝑓 ∈ 𝒞 , the 
CS.KeyGen ⋅  outputs a constrained key 𝑠𝑘 . 

 CS.Sign 𝑥, 𝑠𝑘 → 𝜎 . On input the attribute 𝑥 ∈ 𝒳 and a 
constrained key𝑠𝑘 , the CS.Sign ⋅  outputs a signature 
𝜎 ∈ 𝒴. The signature is correct if and only if 𝑓 𝑥 0. 

 CS.Verify 𝑥, 𝜎 , 𝑣𝑘 → 0,1 . On input the attribute 𝑥, the 
signature 𝜎  and the verification key 𝑣𝑘 , CS.Verify ⋅  
outputs 1 for accepting the signature or 0 for rejecting the 
signature. 

The constrained signature scheme satisfies requirements for 
correctness, unforgeability and privacy which are elaborated as 
follows. 
Correctness. The scheme is correct if for all 𝑥 ∈ 𝒳 and 𝑓 ∈ 𝒞 
with 𝑓 𝑥 0, the following holds: 
 

Pr CS.Verify 𝑥, 𝜎 , 𝑣𝑘
0

𝑣𝑘, 𝑚𝑠𝑘 ← CS.Setup 1
𝑠𝑘 ←CS.KeyGen 𝑚𝑠𝑘, 𝑓

𝜎 ←CS.Sign 𝑥, 𝑠𝑘
negl λ .  

  
Unforgeability. We describe a message-selective 
unforgeability experiment in which an adversary sends a 
message before seeing any public parameters. In the 
experiment, an adversary can make three kinds of queries: 1. a 
query for a constrained key; 2. a query for a signature under a 
specific constraint; 3. a query for a signature that is signed 
under an existing key. 

We define a security game between a challenger 𝒞 and an 
adversary 𝒜  who can be described as a probabilistic 
polynomial time machine (PPTM) as follows: 
 The adversary 𝒜 sends 𝑥∗ that is the message for which it 

intends to forge a signature to the challenger 𝒞; 
 The challenger 𝒞 runs CS.Setup 1  to obtain 𝑚𝑠𝑘, 𝑣𝑘  

and sends 𝑣𝑘 to the adversary 𝒜; 
 Query phase: 
 Key Queries. The adversary 𝒜 sends 𝑓 to the challenger, 

and receives 𝑠𝑘 ← CS.KeyGen 𝑚𝑠𝑘, 𝑓 . 
 Signature Queries. The adversary 𝒜  sends 𝑓, 𝑥  with 

𝑓 𝑥 0  to the challenger. CS.KeyGen 𝑚𝑠𝑘, 𝑓  is 
invoked by the challenger to get 𝑠𝑘 . Finally, the 
challenger returns 𝜎 ← CS.Sign 𝑥, 𝑠𝑘 . 

 Repeated Signature Queries. Adversary 𝒜 sends 𝑖, 𝑥  to 
the challenger. If there are less than 𝑖 signature queries, 
then the challenger returns ⊥. Assume the constraint in the 
𝑖-th query is 𝑓 and the corresponding constrained key is 
𝑠𝑘 . If 𝑓 𝑥 1, then the challenger returns ⊥. Otherwise, 
the challenger returns 𝜎 ← CS.Sign 𝑥, 𝑠𝑘  

 𝒜  outputs a 𝑥∗, 𝜎 ∗  such that CS.Verify 𝑣𝑘, 𝑥∗, 𝜎 ∗

1. For all 𝑓 ∈ 𝒞  queried by 𝒜 , 𝑓 𝑥∗ 1 and 𝒜  never 
asks a signature for 𝑥∗. If all requirements are met, then 𝒜 
wins the experiment. 

A constrained signature scheme is message-selectively 
unforgeable if Pr 𝒜 wins negl λ . 
Privacy. Privacy guarantees the security of the signing key 
after releasing the signed signatures. In a constrained signature 
scheme, the privacy guarantees that the constraint function 𝑓 is 
hidden. 

Firstly, define a privacy game between an adversary 𝒜 and a 
challenger 𝒞 as follows: 
 The challenger 𝒞  runs 𝑣𝑘, 𝑚𝑠𝑘 ← CS.Setup 1  and 

sends 𝑣𝑘 to the adversary 𝒜; 
 𝒜 sends 𝑓 , 𝑓 , 𝑥  such that 𝑓 𝑥 𝑓 𝑥 0; 
 The challenger computes 𝑠𝑘 CS.KeyGen 𝑚𝑠𝑘, 𝑓  and 

𝑠𝑘 CS.KeyGen 𝑚𝑠𝑘, 𝑓 . Then, it samples uniformly 
at random 𝑏 ← 0,1  and computes 
𝜎 , ← CS.Sign 𝑥, 𝑠𝑘 . Finally, it sends 𝑠𝑘 , 𝑠𝑘 , 𝜎 ,  
to 𝒜; 

 𝒜 outputs a bit 𝑏′ and wins the game if 𝑏 𝑏′. 
A constrained signature scheme is strongly-hiding if 

Pr 𝒜 wins negl λ . 
In [20], Tsabary constructs a constrained signature scheme 

from lattice trapdoors. The security of his constrained signature 
scheme is based on the SIS assumption. Our watermarking 
signature scheme takes this constrained signature scheme as an 
underlying component. For completeness, we describe 
Tsabary’s scheme here. 

The initialization parameters are 𝑡, 𝑑. The attribute space is 
0,1  and the constraint space is all 𝑑 -depth circuits ℱ
𝑓: 0,1 → 0,1 . Define the constrained signature scheme 

𝛱  CS.Setup, CS.KeyGen, CS.Sign, CS.Verify  as: 
 CS.Setup 1 → 𝑚𝑠𝑘, 𝑣𝑘 .  Run A ∈ ℤ , TA ←

TrapGen 1 ; sample uniformly a matrix A⃗ ←
$

ℤ . 

Output 𝑚𝑠𝑘 TA and 𝑣𝑘 A, A⃗ . 

 CS.KeyGen 𝑚𝑠𝑘, 𝑓 → 𝑠𝑘 . Compute H EvalF 𝑓, A⃗  

and A A⃗ ⋅ H . Then, obtain 𝑠𝑘 TA||A  ←

ExtensionLeft A, TA . 
 CS.Sign 𝑥, 𝑠𝑘 → 𝜎 . If 𝑓 𝑥 0 , then return ⊥ . 

Otherwise, generate a trapdoor T  for A||A⃗ 𝒙 ⊗ G  
using the constraint secret signing key 𝑠𝑘 . Then, run 

𝜎 ← SamplePre A||A⃗ 𝒙 ⊗ G , T, 0  to generate a 
signature. 

 CS.Verify 𝑥, 𝜎 , 𝑣𝑘 → 0,1 . Output 1 if 𝜎 0, 𝜎 ⊥, 

A||A⃗ 𝒙 ⊗ G ⋅ 𝜎 0  and ∥ 𝜎 ∥ 𝐵 . Otherwise, 
output 0. 

An explanation for CS.Sign ⋅  procedure. Compute 
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H , EvalFX 𝑓, 𝑥, A⃗ . According to Theorem 4, A⃗ 𝑥 ⊗
G H , A 𝑓 𝑥 G A  if 𝑓 𝑥 0 . For the following 
matrices: 
 

A‾ A||A ,  B‾ A||A⃗ 𝑥 ⊗ G ,  S
I 0
0 H ,

 

 
It holds that A‾ B‾ S. According to Theorem 3, there exists an 
algorithm generating a trapdoor TB‾  with knowledge of 𝑠𝑘 . 
Thus, it is practical to invoke SamplePre ∙  to compute a 
signature for 𝑥. 

Theorem 5 (Correctness, privacy, and unforgeability [20]). 
The construction is correct, statistically key-hiding and 
message-selectively unforgeable for 𝒳, ℱ . 

IV. A WATERMARKING SCHEME FOR CONSTRAINED 

SIGNATURES 

Definition 4. A watermarking signature scheme is a tuple of 
probabilistic polynomial time algorithms WM.Gen, 
 SIG.Gen , SIG.Gen, Sign, Verify, Extract  which is correct, 
existentially unforgeable under the chosen message attack, and 
𝜖-unremovability. 
 WM.Gen 1 → 𝑒𝑘 . On input the security parameter 𝜆, 

WM.Gen ⋅  outputs an extraction key 𝑒𝑘. 
 SIG.Gen 1 → 𝑣𝑘 , 𝑠𝑘 . On input the security 

parameter 𝜆, SIG.Gen  outputs a verification key 𝑣𝑘  and 
a secret key 𝑠𝑘 . 

 SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘 → 𝑣𝑘, 𝑠𝑘 . On input the 
security parameter 𝜆 , an extraction key 𝑒𝑘 , and an 
embedded message 𝑚𝑠𝑔, SIG.Gen ⋅  outputs a pair of a 
verification key 𝑣𝑘 and a secret key 𝑠𝑘. 

 Sign 𝑣𝑘, 𝑠𝑘, 𝑥 → 𝛴 . On input a verification key 𝑣𝑘 , a 
secret key 𝑠𝑘 and a message 𝑥, Sign ⋅  outputs a signature 
𝛴 . 

 Verify 𝑣𝑘, 𝑥, 𝛴 → 0,1 . On input a verification key 𝑣𝑘, 
a message 𝑥  and a signature 𝛴 , Verify ⋅  outputs 0 for 
rejecting the signature or 1 for accepting the signature. 

 Extract 𝑒𝑘, 𝑣𝑘, 𝐶 → 𝑚𝑠𝑔, ⊥ . On input an extraction key 
𝑒𝑘 , the verification key 𝑣𝑘  and a circuit 𝐶 , Extract ⋅  
outputs an embedded message or a symbol ⊥. 

Correctness. For every message x and embedded message 
msg, the following holds: 
 

Pr

⎣
⎢
⎢
⎢
⎢
⎡

Verify 𝑣𝑘, 𝑥, 𝛴 1 ∨

Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅
𝑚𝑠𝑔

𝑒𝑘 ← WM.Gen 1

𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1
𝑣𝑘, 𝑠𝑘 ← SIG.Gen

1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘
𝛴 ←Sign 𝑣𝑘, 𝑠𝑘, 𝑥 ⎦

⎥
⎥
⎥
⎥
⎤

negl λ . 
 
(Selective-)Existential Unforgeability Under the Chosen 
Message Attack. This notion is captured by an experiment 
between a challenger and an attacker 𝒜 𝒜 , 𝒜  as: 
Exp𝒜 𝜆 : 
1. 𝑥∗ ← 𝒜 1  

2. 𝑒𝑘 ← WM.Gen 1  
3. 𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1  
4. 𝑣𝑘, 𝑠𝑘 ← SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘  

5. 𝜎∗ ← 𝒜sign ,⋅ 𝑣𝑘 . When the attacker requires a 
signature for 𝑥∗, the challenger returns ⊥. 

6. If Verify 𝑣𝑘, 𝑥∗, 𝜎∗ 1, output 1. Otherwise, output 0. 
The watermarkable signature is (selective-)existential 

unforgeable under the chosen message attack if 
Pr[Exp𝒜 (𝜆)=1]≤negl λ . 

 𝜖-Unremovability A.

Definition 5. Fix a security parameter 𝜆. For a watermarking 
signature scheme 𝛱  WM.Gen, SIG.Gen , SIG.Gen, 
Sign, Verify, Extract , we say an adversary 𝒜 𝒜 , 𝒜  is 
unremoving-admissible if the following conditions hold: 
 The adversary 𝒜 makes exactly one challenge query. 
 The circuit 𝐶 output by the adversary 𝒜 possesses almost 

the same distribution as the circuit 𝐶∗  output by the 
challenger. Except 𝜖 of the whole message space, 𝐶 must 
output a correct corresponding signature. Denote by 
𝐶 ≊ 𝐶∗. 

For every unremoving-admissible probabilistic polynomial 
time adversary 𝒜 and an embedded message msg, 

 

Pr

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐶 ≊ Sign ∗ ⋅ ∧

Extract 𝑒𝑘, 𝑣𝑘∗, 𝐶
𝑚𝑠𝑔∗

𝑒𝑘 ← WM.Gen 1

𝑚𝑠𝑔∗ ← 𝒜 1

𝑣𝑘 ,∗, 𝑠𝑘 ,∗ ← SIG.Gen 1
𝑣𝑘∗, 𝑠𝑘∗ ← SIG.Gen

1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 ,∗, 𝑠𝑘 ,∗

𝐶 ← 𝒜 SIG.Gen 1 , 𝑣𝑘∗, Sign ∗ ⋅ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

≤negl λ . 
 

Remark. Definition 4 formulates a private-key watermarking 
signature scheme. The extractor must possess the private key to 
extract the message from the marked circuit. A stronger notion 
for watermarking is publicly-extractable watermarking. The 
extractor can extract the message without knowledge of the 
private key. In [5], the definition for a watermarking signature 
scheme is in the setting of public-key setting. In this work, we 
consider a watermarking signature scheme in the private-key 
setting and the marked circuit is embedded with a message 
instead of merely a 𝑚𝑎𝑟𝑘 or 𝑢𝑛𝑚𝑎𝑟𝑘 label. 

 A Concrete Scheme B.

To construct a watermarking signature scheme, a secure PRF 
and a secure constrained signature scheme are required. We 
suppose that a secure PRF 𝛱 PRF.Gen, PRF.Eval  maps 

0,1  to 0,1 . The watermarking signature scheme 
𝛱  WM.Gen , SIG.Gen , SIG.Gen , Sign , Verify , 
Extract  is defined as follows: 

WM.Gen(1 ): Sample 𝑘∗ ← PRF.Gen 1 . Choose a set of 
short matrices U ∈ ℤ with ∥ U ∥ 𝛽 for 𝑖 1, 2, … , 𝑡. 
Uniformly sample h ∈ 0,1  for 𝑗 1, 2. . . , 𝑑  and a matrix 

B ←
$

1, 1 . Set an extraction key as 𝑒𝑘
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𝑘∗, B, U , … , U , h , . . . , h . 
SIG.Gen 1 : A ∈ ℤ , TA ← 𝑇𝑟𝑎𝑝𝐺𝑒𝑛 1 , 1 , 𝑞 ; 

sample uniformly a matrix A⃗ ←
$

ℤ . And set 𝑣𝑘

A,  A⃗  and 𝑠𝑘 TA. 
SIG.Gen(1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘 )： Compute c  c , c , c , 

c , . ..  c , c ←  PRF.Eval 𝑘∗, Ah , . . . , Ah  and c
ABc  for 𝑖 1,2, … , 𝑡. 
 We suppose that 𝑓 is the function to determine whether the 

signed message is equal to one element of a 𝑡-size set. 
Specifically, 𝑓 ⋁ 𝑒 𝑞 𝑥, 𝑦 , where e 𝑞 𝑥, 𝑦 1  if 
𝑥 𝑦  and 𝑒𝑞 𝑥, 𝑦 0  if 𝑥 𝑦 . The function 𝑓  is 
defined with respect to the marked message msg, namely, 
𝑦 c  for 𝑖 1, 2. . . , 𝑡. 

 We compute H ← EvalF 𝑓, A⃗ . And A A⃗ ⋅ H . Then, 
we obtain 𝑠𝑘 ← ExtensionTrap 𝑠𝑘 , A||A  with 
𝑠𝑘 TA. 

Set 𝑣𝑘 A, A⃗, c , 𝑠𝑘 𝑠𝑘 , U , … , U . 
Sign(𝑣𝑘, 𝑠𝑘, 𝑥): Procedure Sign(⋅) signs almost all x’s from 

domain except several points that are relative to the marked 
message and the outputs of the PRF. 
 If 𝑓 𝑥 0, return ⊥. 

 Otherwise, generate a trapdoor T  for A||A⃗ 𝑥 ⊗ G  
using the constraint signing key 𝑠𝑘 . Then, generate the 

signature 𝜎 ← SamplePre A||A⃗ 𝑥 ⊗ G , T, 0 . 
 V AU𝒊 𝑥 G , and H A|V 𝑥 1 G , where 

𝑥  is the 𝑖-th bit of 𝑥. Set 𝜎 SampleRight H , U , c  

for 𝑖 1, . . . , 𝑡. 𝜎 ∈ ℤ . ∥ 𝜎 ∥ 𝛽√𝑚𝑚′√𝑚 𝑚′. 
 Output 𝛴 𝜎 , V , 𝜎  as the signature for 𝑥. 

Verify( 𝑣𝑘, 𝑥, 𝛴 ): Express 𝛴 𝜎 , V , 𝜎  as the 
signature for 𝑥. If the following three conditions are satisfied, 
output is 1; otherwise, 0. 

 𝜎 ⊥and ∥ 𝜎 ∥ 𝛽√𝑚𝑚′√𝑚 𝑚′ for all 𝑖 1, 2, … , 𝑡. 
 A|V 𝑥 1 G ⋅ 𝜎 c  for all 𝑖 1, 2, … , 𝑡. 

 A||A⃗ 𝑥 ⊗ G ⋅ 𝜎 0  and ∥ 𝜎 ∥ 𝐵 , 𝜎 ⊥ , 
𝜎 0. 

Extract( 𝑒𝑘, 𝑣𝑘, Sign ⋅ ): For an arbitrary valid signature, 

parse a signature 𝛴 for a message 𝑥 into 𝜎 , V , 𝜎 . 
 Compute c  c , c , c , c , . ..  c , c ← 

PRF.Eval 𝑘∗, Ah , . . . , Ah . 
 If A|V 𝑥 1 G ⋅ 𝜎 ABc  or Sign c =⊥, then 

𝑚𝑠𝑔 0 ; if A|V 𝑥 1 G ⋅ 𝜎 ABc  or 
Sign c = ⊥ , 𝑚𝑠𝑔 1 , for all 𝑖 1, 2, . . . , 𝑡 . 
Otherwise, output ⊥. 

 Parameter Choices C.

For the above scheme, we require that 𝛽 𝑞 , 𝑛 𝜆 , 
𝑞 2 , 𝑡 𝑝𝑜𝑙𝑦 𝜆 2 , 𝑚 𝑛⌈log𝑞⌉  and 𝑚′
max 𝑚 , 𝑛 1 ⌈log𝑞⌉ 2𝜆 , where 𝑚  is required in 

Theorem 2. 𝐵 𝜏√𝑡2 𝑚 √𝑚′ 𝑡𝑚 , where 𝜏 is set to be 

max √𝑚′𝑡2 𝑚 . , 𝑂 𝑛⌈log𝑞⌉log𝑛  and 𝑘 is the depth of 
circuit 𝑓. All parameters are required identically to those in 
[20]. 

V. SECURITY PROOFS 

In this section, we prove that the watermarking scheme for 
constrained signatures in Section IV.B satisfies properties of 
verification correctness, extraction correctness, existential 
unforgeability, privacy, and 𝜖-unremovability. 

 Correctness A.

Theorem 6. If parameters are chosen as above, then the 
construction of watermarking signature scheme is correct. 
Proof. For convenience, we use the same set of notations from 
Section IV.B. Suppose that a signature 𝛴  for a message 𝑥  is 
output by the procedure Sign ⋅  which is a watermarked circuit 
with a message “ 𝑚𝑠𝑔 ”. Next, we will prove that 
Verify 𝑣𝑘, 𝑥, 𝛴 1  and Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅ 𝑚𝑠𝑔 
where 𝑚𝑠𝑔  is the correct embedded message with non- 
negligible probability. 

First, we prove that Verify 𝑣𝑘, 𝑥, 𝛴 1 . Suppose that 
𝛴 𝜎 , V , 𝜎 . According to Corollary 2, 𝜎  follows a 
distribution that is not far from the Discrete Gaussian 

Distribution 𝒟
ℤ ,

 𝜏 𝑂 √𝑚𝑚′𝛽 . 

Lemma 1 states that 𝜎  is bounded by 𝜏√𝑚′ 𝑚  with 
non-negligible probability. Thus, the first condition holds. The 
equation A|V 𝑥 1 G ⋅ 𝜎 c  holds for all 𝑖
1,2, … , 𝑡. This is guaranteed by the procedure SampleRight . 
Thus, the second condition holds. The remaining verification 
holds due to the correctness of underlying constrained signature 
scheme in [20]. 

Secondly, we prove that Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅ 𝑚𝑠𝑔. 

Since the secret key 𝑘∗  is shared by both SIG.Gen ⋅  and 
Extract ⋅ , the vectors c’s are identical in these two procedures. 
Moreover, the procedure SampleRight  guarantees the 
correctness of verification equations in Extract ⋅ . The 
Sign ⋅  condition is used additionally to choose the correct 
message bit since the Sign ⋅  can not sign a signature for 

𝒄  for all 𝑖 1, 2. . . , 𝑡. 

 (Selective) Existential Unforgeability under Chosen B.
Message Attack 

Theorem 7. If the PRF is secure and the underlying constrained 
signature scheme is selectively existential unforgeable under 
chosen message attack, under the SIS , , ,  assumption where 

𝐷 𝑚 1 𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′ , then the watermarking 
signature scheme in the above section is selectively existential 
unforgeable under chosen message attack. 
Proof. In our scheme, the signature 𝛴  for a message 𝑥  is 
composed of two parts: one is generated by the underlying 
constrained signature; the other is generated by SampleRight ⋅  
algorithm. Thus, we prove these two parts are unforgeable 
separately. 

We assume that there exists an adversary 𝒜  who can 
successfully forge a signature in the selective setting for the 
watermarking signature scheme with non-negligible 
probability, then there exists an adversary 𝒞  who can break 
SIS , , , . At the beginning of the unforgeability experiment, 
the adversary sends a message 𝑥∗ as its challenge. 
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We firstly prove that under the SIS , , ,  assumption, the 
second part of the signature 𝛴 is unforgeable. By Theorem 2, 
the matrix A is sampled approximately uniformly at random. 
By our construction, matrices U  are sampled uniformly at 
random. Thus, the matrix AU  is sampled uniformly at random. 
Uniformly at random sample a matrix R  from 1, 1 . 
According to the leftover hash lemma (Lemma 2), if we set 
AU AR 2𝑥∗ 1 G, then the distribution of signature 𝛴 
will not change. If the adversary successfully forges a signature 
component 𝜎∗, then according to our construction, we have: 

 

A|V 𝑥∗ 1 G 𝜎∗ ABc . 
 
If we write 𝜎∗ 𝜎∗ , 𝜎∗ , then the above equation implies: 
 

A 𝜎∗ R 𝜎∗ Bc 0. 
 
Since 

‖𝜎∗ R 𝜎∗ Bc ‖

𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′,
  

 
𝜎∗ R 𝜎∗ Bc  is a valid solution to SIS , , ,  where 

𝐷 𝑚 1 𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′. 
Next, we prove that the first part is unforgeable. Assume that 

there exists an adversary 𝒜  who can successfully forge a 
signature in the selective setting for the watermarking signature 
scheme with non-negligible probability, then there exists an 
adversary ℬ  who can forge a signature for the constrained 
signature scheme with overwhelming probability. 

When 𝒜 makes a challenge query to require the signature 
for 𝑥∗ , adversary ℬ  trivially send 𝑥∗  to the challenger. The 

challenger sends A,  A⃗  chosen as in the constrained signature 
scheme as the verification key to ℬ . Before answering any 
signature query from the adversary 𝒜 for 𝑥 𝑥∗, adversary ℬ 
randomly chooses c , c , . . . , c ∈ ℤ  and output 
A, A⃗, c , c , . . . , c  as the verification key to adversary 𝒜 . 

Adversary ℬ chooses a set of short matrices U  as a secret. 
Since the underlying PRF is secure, this modification is 
indistinguishable from the real SIG.Gen ⋅  of the 
watermarking signature scheme except the generation of the 
constrained secret signing key. When adversary 𝒜 requires a 
signature for 𝑥 , adversary ℬ trivially sends 𝑥  and a function 
𝑓 𝑧 𝑧 𝑥 to the challenger. Meanwhile, adversary ℬ runs 
𝜎 ← SampleRight A|AU 2𝑥 1 G , c  and sends AU
𝑥 G, 𝜎  along with the signature 𝜎  from the challenger to 
adversary 𝒜 as the final signature for 𝑥. Obviously, adversary 
ℬ perfectly simulates the watermarking signature scheme for 
adversary 𝒜 . When adversary 𝒜  aborts the experiment, it 
would send a signature 𝛴 ∗ as the forge to ℬ. Adversary ℬ just 
extracts the corresponding part as the signature forge for 𝑥∗ in 
the experiment for breaking the underlying constrained 
signature scheme. Hence, ℬ has at least the same advantage as 
𝒜  to win the experiment. Since the underlying constrained 
signature scheme is selectively existential unforgeable under 
chosen message attack, this is a contradiction. 

 Privacy C.

In this section, we treat our construction in Section IV.B as a 
constrained signature scheme. In the following, we prove our 
constrained signature scheme satisfies privacy. 
Theorem 8. If the PRF is secure, the underlying constrained 
signature scheme is strongly-hiding, then the watermarking 
scheme for signatures is strongly-hiding. 
Proof. Since the PRF is secure, c , c , c , c , . .. c , c  is 
indistinguishable from uniform random variables. By the 
leftover hash lemma, AB is sampled approximately uniformly 
at random. Thus, for all 𝑏 ∈ 0,1  and 𝑖 ∈ 𝑡 , ABc  follows a 
distribution which is not far from uniform sampling. In other 
words, for all 𝑏 ∈ 0,1  and 𝑖 ∈ 𝑡 , c  is hidden from ABc . 
By Theorem 5, the underlying constrained signature scheme is 
strongly-hiding. Therefore, the property of hiding the constraint 
functions is implied by the privacy of the underlying 
constrained signature scheme. 

 ϵ-Unremovability D.

Before proving the unremovability of the constructed 
watermarking signature scheme, the experiment game between 
an adversary and a challenger is defined in the following. An 
adversary is allowed to make queries to a marking oracle for 
more than once while make queries to a challenge oracle 
merely once. 

Experiment I. 
 Setup Phase. Sample 𝑘∗ ← PRF.Gen 1 . Choose a set of 

short matrices U ∈ ℤ with ∥ U ∥ 𝛽  for 𝑖
1, 2 … , 𝑡 . Uniformly sample h ∈ 0,1  for 𝑗 1, 2. . . , 𝑑 

and a matrix B ←
$

1,1 . Set 
𝑒𝑘 𝑘∗, B, U , … , U , h , . . . , h . 

 Query Phase. 
 Marking Oracle. The adversary uniformly samples a 

matirx A⃗ ←
$

ℤ  and runs A ∈ ℤ ,  TA  ←
TrapGen 1 , 1 , 𝑞 , then sends A, TA  and a message 
𝑚𝑠𝑔 that it would like to embed. The challenger does the 
subsequent steps as in SIG.Gen ⋅ . Then, the challenger 
sends a Sign ⋅  circuit to the adversary. 

 Challenge Oracle. The adversary chooses a challenge 
message 𝑚𝑠𝑔∗ sent to the challenger. The challenger runs 
𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1  and runs 𝑣𝑘∗, 𝑠𝑘∗ ←

SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔∗,  𝑣𝑘 , 𝑠𝑘 . Then, it sends a 
challenge circuit Sign ∗ ⋅  and the public verification key 

𝑣𝑘∗ to the adversary. 
 Challenge Phase. The adversary outputs a circuit 

Sign ∗ ⋅ . 

 Extraction Phase. For an arbitrary valid signature 𝛴 
output by the circuit Sign ∗ ⋅ , the extractor parses 𝛴 into 

𝜎 , V , 𝜎 . Then, it does the following calculation: 

 Compute c c , c , c , cc , . .. c , c ← PRF.Eval 𝑘∗ , 
Ah , . .., Ah . 

 For all 𝑖 1, 2, . . . , 𝑡 , if A||V 𝑥 1 G ⋅ 𝜎 AB ⋅
c  or Sign ∗ c ⊥, then 𝑚𝑠𝑔 0; if A||V 𝑥
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1 G ⋅ 𝜎 AB ⋅ c  or Sign ∗ c ⊥ , then 𝑚𝑠𝑔 1 . 

Otherwise, output ⊥. 
Here, A  is part of the verification key for the challenge 

signature circuit. 
Theorem 9. For any efficient and unremoving-admissible 
adversary 𝒜, the constructed watermarking signature scheme 
possesses unremovability property. 
Proof. The unremovability of our scheme is obvious. 
Removing an embedded message is equivalent to modifying 
part of the signature verification key. 
Remark. When a watermarked signature scheme is distributed, 
the verification key is considered to be hard to change. 

VI. CONCLUSION 

In this work, we construct a watermarking scheme for 
constrained signatures under a standard lattice assumption in 
the symmetric key setting. This is the first concrete 
watermarking scheme for signatures with hidden watermarks 
and constraint functions in the symmetric key setting. 

Our construction adopts the methods in [9] and [5] to embed 
a message in the original program. We adopt a constrained 
signature scheme described in [20] as part of the whole 
signature scheme. To hide the watermark, we use 
randomization. One shortcoming is that we expand the size of a 
signature. Possible future works include how to reduce the 
signature size, how to design a watermarking scheme for 
signatures with both hidden watermarks and constraint 
functions in the public-key setting. We also believe that the 
techniques we used in the paper may provide insights for other 
researchers in constructing watermarking schemes for other 
cryptographic constructions. 
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