

Abstract—To claim the ownership for an executable program is a

non-trivial task. An emerging direction is to add a watermark to the
program such that the watermarked program preserves the original
program’s functionality and removing the watermark would heavily
destroy the functionality of the watermarked program. In this paper,
the first watermarking signature scheme with the watermark and the
constraint function hidden in the symmetric key setting is constructed.
The scheme uses well-known techniques of lattice trapdoors and a
lattice evaluation. The watermarking signature scheme is unforgeable
under the Short Integer Solution (SIS) assumption and satisfies other
security requirements such as the unremovability security property.

Keywords—Short integer solution problem, signatures, the
symmetric-key setting, watermarking schemes.

I. INTRODUCTION

HE notion of watermarking is influential for digital rights
management, such as tracing information leaks or

resolving ownership disputes. There are numerous works, for
example [1], [2], on watermarking pictures, music files,
movies, or other perceptual objects. On the other hand, it is not
trivial how to watermark an executable program. The difficulty
was formally illustrated in [3], [4]. They showed that no
watermarking scheme can be constructed for any program such
that the watermarked program behaves identically to the
original program even assuming the existence of a powerful
indistinguishable obfuscator (the IO assumption). But if we can
sacrifice the perfect correctness, [5] showed that assuming the
existence of an indistinguishable obfuscator, watermarking
pseudorandom functions, signatures and encryption schemes is
possible if we allow the watermarked programs behave
differently from the original programs with a negligible
fraction of the whole domain.

Based on Cohen et al.’s work [5] and other previous studies
[9]-[12], we we can have three security requirements for a
watermarked program. The first one is correctness and
function-preserving, which requires that the watermarked
program must behave almost identical to the original one
except for a few cases with negligible probability, which should
be unnoticeable to the users. The second one is unremovability.
Once a program is watermarked, an adversary cannot easily
remove the watermark while keeping the correctness and

Yanmin Zhao is with The University of Hong Kong, China (e-mail:

ymzhao@cs.hku.hk).

function-preserving property1. The third one is unforgeability,
which means that an adversary cannot forge a valid
watermarked program which behaves significantly different
from any original watermarked programs he/she is able to
access to.

Most of existing works for watermarking a program were
done for pseudorandom functions (PRFs) [5], [9]-[12]. Only
limited results exist on how to watermark other cryptographic
schemes such as signatures and encryptions. In particular for
signatures2, there are only two results. Reference [5] proved the
existence of a watermarking scheme, but the scheme is based
on the IO assumption and no concrete construction was given.
The only concrete scheme we can find for signatures is [14].
They constructed a watermarking scheme for constrained
signature schemes (i.e., these signing schemes only sign
correctly for messages satisfying certain constraints and cannot
output a correct signature for other messages), but the
watermark needs to be exposed. Both results allow public
extraction of the watermark.

“Public” extraction and “exposed” watermark are useful in
certain application scenarios such as when a client tries to
purchase a software (program), it is easy for him to check if the
copyright owner is the seller or an authorized agent to sell him
the software. On the other hand, there are also applications that
we prefer having “private” extraction and “hidden” watermark
(i.e., no user except the signer can tell if the software has been
watermarked). For example, hidden watermark can help to
trace and identify the copyright infringement chain without
being noticed by the suspects and in some cases, signers may
want to embed private information into the watermark for
which they do not want to reveal unless it is really necessary
such as in a court case to prove the ownership of the program.
However, to the best of our knowledge, currently there is no
result in the symmetric key setting 3.

In this paper, we consider watermarking a signature scheme
and propose the first watermarking signature scheme in the
symmetric key setting with a hidden watermark and a hidden

1 Note that in some earlier works [6]-[8], the unremovability property is only

guaranteed when an adversary is restricted to certain modification
requirements.

2 For encryption, there are some results. For example, [13] gave
constructions for watermarking public-key encryption with unremovability and
unforgeability security properties.

3 We also remark that this “watermarking a program" is an important and
emerging direction. Although no concrete and real applications yet, we believe
that real applications will follow after the research community has come up
with effective schemes for different settings.

Yanmin Zhao, Siu Ming Yiu

A Watermarking Signature Scheme with Hidden
Watermarks and Constraint Functions in the

Symmetric Key Setting

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

270International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

constraint function. Our scheme works for any constrained
signature schemes. We prove that our watermarking scheme is
secure against chosen programs attack in which the adversary
can access the watermarking oracle while the watermarked
signature scheme is unforgeable.

Technique overview: Our scheme is under the symmetric
key setting, in which the key used to watermark the signature
scheme will be the key for extracting the watermark from the
scheme, i.e., only the owner who has the correct key can show
the watermark to prove its ownership.

For all we know, there is no previous scheme for
watermarking a signature scheme under the symmetry key
setting. It is easy to transform the scheme in [14] from “public”
extraction to “private” extraction as follows. To hide the
embedded message (which means that the embedded message
cannot be obtained directly from the signature), we first encrypt
the embedded message and then encode the resulting ciphertext
into the signing key. This construction can enable the private
extraction. But on the other hand, the “exposed” message still
provides hints to everyone that the program has been
watermarked.

Technically, in order to hide both the message and also the
constraint function, we first borrow the idea of the
message-embedding method in [9] to create and embed our
watermark message into the signature scheme. The underlying
idea is as follows. To encode a message 𝑚𝑠𝑔, we first generate
a set of points 𝑥 , 𝑥 ∈ where 𝑡 is the length of the

embedded message 𝑚𝑠𝑔. The subset 𝑥 ∈ , which is set
of the messages used to encode the embedded message, is set of
the messages that cannot be correctly signed by a constrained
signing key. If the set 𝑥 , 𝑥 ∈ is shared by the
watermarking procedure and the extraction procedure, then for
an embedded message 𝑚𝑠𝑔, the watermarking procedure can
change the signatures for messages belonging to the subset
𝑥 ∈ to encode the message 𝑚𝑠𝑔 into the signature

scheme. This explains why both this paper and [14] choose a
constrained signature scheme as an underlying component to
construct a watermarking signature scheme. And the extraction
procedure can test every pair of 𝑥 , 𝑥 . If the signature for 𝑥
is not correct, then 𝑚𝑠𝑔 0; otherwise, 𝑚𝑠𝑔 1.

Once we know how to encode a message, another difficulty
is to hide the point set. Otherwise, the adversary can just change
the signatures for the messages in the point set to remove the
embedded message. The difficulty is that the hidden points
must be found later when extracting the embedded message.
Our solution is to randomize the set 𝑥 ∈ by multiplying
a secret matrix B and a public matrix A and define the new set
AB𝑥 ∈ as part of the public verification key. We also

remark that we cannot use the same point set for two different
signature schemes as explained in the following. Since the
point set used for encoding the embedded message must be
linked to the secret signing key, the point set must be unique for
every signing key. Suppose that we use the same point set
encoding messages for signature schemes 𝑆𝑖𝑔 and 𝑆𝑖𝑔 . If
some points in the set are determined by noticing incorrect

signatures for a watermarked signature scheme 𝑆𝑖𝑔 , then the
embedded message cannot be extracted correctly for the
signature scheme 𝑆𝑖𝑔 since the adversary knows which
message’s signature should be changed.

For how we make use of these techniques in the concrete
construction, please refer to Section IV. The rest of the paper is
organized as follows: Section II provides some technical
background knowledge. Section III talks about the constrained
signature schemes. Section V gives the formal proofs of the
security of the proposed scheme and Section VI concludes the
paper.

Remarks: Another formal definition for watermarking
schemes can be found in [15]. They formulated the rigorous and
general security definition for watermarking schemes. Their
security definition implies other former definitions, while also
no concrete constructions are given.

Roughly speaking, our proposed definition is for the case of
“private” marking and “private” extraction in a symmetric-key
setting. All previous definitions are defined for the public-key
setting, either with “public” marking or “public” extraction.
More precisely, in [5], Cohen et al. define a watermarking
scheme for a signature scheme by generating a public
extraction key 𝑥𝑘 and a secret marking key 𝑚𝑘. In other words,
any signature scheme is watermarked by a marker who
possesses the secret marking key while anyone else can extract
the embedded mark or message. Afterwards, Goyal et al. define
a different watermarking scheme for signature scheme. In their
work [14], a signature scheme can be marked by anyone (public
marking) and the embedded mark or message can be extracted
from the watermarked signature circuit by anyone (public
extraction). In their extensions, they briefly state how to
construct a secret marking and public extraction scheme. On
the other hand, our watermarking scheme definition is
different. Ours only permits the person who is aware of the
secret marking or extraction key can execute the marking or
extraction algorithm.

Existing works focus on watermarking cryptographic
programs. A major reason is discussed in [5], in which they
showed that if a program is learnable, i.e., it is possible for an
adversary to consider the watermarked program as a virtual
black box and recover the description of the original program,
then it is possible for the adversary to construct a program with
the same functionality without the watermark (for details,
please refer to [5]), then it is not watermarkable. Most of the
cryptographic programs are not learnable while many other
programs belong to the category of learnable programs, thus
researchers focus on how to watermark a cryptographic
program.

II. PRELIMINARIES

 Background on Lattices and the SIS Problem A.

Notation. For any integer 𝑞 2, the ring of integers modulo q
is denoted by ℤ . Elements of ℤ are represented in the range

𝑞/2, 𝑞/2 and take their representatives in the range as
absolute values. For a vector v ∈ ℤ , ∥ v ∥ 𝛽 if each
component v 𝛽. For a matrix V ∈ ℤ , ∥ V ∥ 𝛽 if each

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

271International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

entry V , 𝛽.
The SIS Problem. Let 𝑛, 𝑚, 𝑞, 𝐵 be integer parameters. In the
SIS(𝑛, 𝑚, 𝑞 , 𝐵) problem, given a uniformly random matrix
A ∈ ℤ , the attacker targets to find a vector u ∈ ℤ with
𝐮 0 and ∥ u ∥ 𝐵 4 such that A ⋅ u 0. For parameters
𝑛 𝑛 𝜆 , 𝑚 𝑚 𝜆 , 𝑞 𝑞 𝜆 , 𝐵 𝐵 𝜆 defined in terms
of the security parameter 𝜆, the hardness assumption of the
SIS(𝑛, 𝑚, 𝑞, 𝐵) problem states that for any PPT (probabilistic
polynomial time) attacker 𝒜,

Pr A ⋅ u 0 ∧ ∥ u ∥ 𝐵 ∧ 𝐮 0: A
← ℤ𝑞

𝑛 𝑚, u←𝒜 1λ, A negl λ .

Theorem 1 [16]-[20]. For any 𝑚 poly 𝑛 , 𝐵 0 and
sufficiently large 𝑞 𝐵 poly 𝑛 , solving SIS , , , with
non-negligible possibility is at least as hard as solving the
decisional approximate shortest vector problem GapSVP and
the approximate shortest independent vectors problem SIVP
on any 𝑛-dimensional lattice with overwhelming possibility,
for some 𝛾 𝐵 poly 𝑛 .
Lattice Trapdoors. Let 𝑛, 𝑞 ∈ ℤ , g 1,2,4, . . . , 2⌈log ⌉

1 ∈ ℤ⌈log ⌉ and 𝑚 𝑛⌈log𝑞⌉. The gadget matrix G g ⊗ I ,
where ⊗ is the tensor product of two matrices. For any 𝑡 ∈ ℤ,
define G : ℤ → 0,1 mapping each entry of the input
matrix into a column vector which is the bit decomposition of
the corresponding entry. For any A ∈ ℤ , it holds that
G ⋅ G A A.

As stated in Theorem 1, the SIS , , , problem is hard.
However, with some trapdoor, solving the SIS , , , problem
is tractable for any random matrix A. Moreover, SIS , , ,
problem is easy to solve for a gadget matrix G.
Theorem 2 (Trapdoor Generation [16], [21]). Given integers
𝑛 1, 𝑞 2, and 𝑚 𝑂 𝑛log𝑞 , there exists an efficient
algorithm A, TA ← TrapGen 1 , 1 , 𝑞 , where A ∈ ℤ is
2 -uniform for all 𝑚 𝑚 . Meanwhile, there exists an
efficient algorithm u ← SamplePre A, TA, v such that Au v
and u follows Discrete Gaussian distribution 𝒟ℤ , with

𝜏 𝑂 𝑛log𝑞log𝑛 .
Theorem 3 (Trapdoor Extension [21], [22]). Given A ∈ ℤ
with a trapdoor TA, if there exist two matrices B ∈ ℤ and
S ∈ ℤ with the largest singular value 𝑠 S such that
A BS mod𝑞 , then TA and S can be used to generate a
trapdoor TB for the matrix B . If the output of
SamplePre A, TA, v follows a distribution that is not far-from
the Discrete Gaussian distribution 𝒟ℤ , , then the output
SamplePre B, TB, v follows a distribution that is not far-from
the Discrete Gaussian distribution 𝒟ℤ , , in which 𝜏′
𝜏′𝑠 S .
Corollary 1. As stated in Theorem 3, set S I |0
specifically. Given A ∈ ℤ with a trapdoor TA , for any

4 Usually, the SIS Problem is stated with ℓ norm rather than ℓ norm. The

two statements are equivalent up to some small losses of parameters. ℓ norm
is chosen for simplicity.

B ∈ ℤ , there exists an efficient algorithm A|B , T A|B
← ExtensionLeft A, TA . If the output of SamplePre A, TA, v
follows a distribution that is not far-from the Discrete Gaussian
distribution 𝒟ℤ , , then u ← SamplePre A|B , T A|B , v
follows a distribution that is not far-from the Discrete Gaussian
distribution 𝒟ℤ , and 𝜏′ 𝜏.

Before proceeding to the following corollary, we recall that
the trapdoor for a gadget matrix G is trivial.
Corollary 2. As stated in Theorem 3, set S R |I
specifically. Given matrices A ∈ ℤ and R ∈ ℤ , there
exists an efficient algorithm M, TM ← ExtensionRight A, R,
G where M A|AR+G . And u ← SamplePre M, TM, v
follows a distribution that is not far-from the Discrete Gaussian

distribution 𝒟ℤ , for 𝜏 𝑂 √𝑚𝑚′ ∥ R ∥ .
In particular, ExtensionRight A, R, G and SamplePre A

|AR G , T A|AR G , v are renamed as SampleRight A, R, v
in the following.
Discrete Gaussian Distribution. Let 𝑞 2 be a prime,
A ∈ ℤ and u ∈ ℤ . Define 𝛬u A e ∈ ℤ , 𝑠. 𝑡. Ae

u mod𝑞 . Suppose S is any matrix, and S is the
Gram-Schmidt orthogonalization of S , define ∥ S ∥
max ∥ s̃ ∥ , …, ∥ s̃ ∥ .

For any vector x ∈ ℤ and any 𝑠 0, a Gaussian function
scaled by a factor 𝑠 is defined by

𝜌 x exp 𝜋 ∥ x ∥ .

For any countable set A and a parameter 𝑠 0, the Discrete

Gaussian probability distribution 𝒟 , x is defined as

𝒟 , x
x x

∑y∈ y
.

Lemma 1 [18], [23]. Assume that 𝑞 2 and A ∈ ℤ with

𝑚 𝑛. Let TA is a basis for 𝛬 A and 𝑠 ∥ TA ∥ 𝜔 log𝑚 .
Then for u ∈ ℝ :

Pr x ∼ 𝒟 u A , : ∥ x ∥ √𝑚𝑠 negl 𝑛 .

Lattice Evaluation. For the following, we cite a theorem from
[20] directly. The evaluation procedure has been studied in
many works [21], [22], [24]-[27] relating to LWE-based FHE
and ABE. The description from [20] is similar to one in [28],
[29].
Theorem 4 (Theorem 3 [20]). For any 𝑛, 𝑞, 𝑡 ∈ ℤ and

𝑚 𝑛⌈log𝑞⌉ , let A⃗ ∈ ℤ , 𝑓 be a d-depth Boolean
circuit 𝑓: 0,1 → 0,1 , and x 𝑥 , 𝑥 , . . . , 𝑥 ∈ 0,1 .
There exist two efficient algorithms EvalF and EvalFX s.t.

H EvalF 𝑓, A⃗ and H ,x EvalFX 𝑓, x, A⃗ where
H , H ,x ∈ ℤ . It holds that ∥ H ∥ , ∥ H ,x ∥ 2𝑚

and A⃗ x ⊗ G ⋅ H ,x A⃗H 𝑓 x G mod𝑞 .
Lemma 2 [30]. Suppose that 𝑚 𝑛 1 log𝑞 𝜔 log𝑛 and
that 𝑞 2 is prime. Let R be an 𝑚 𝑘 matrix chosen
uniformly in 1,1 mod𝑞 where 𝑘 𝑘 𝑛 is

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

272International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

polynomial in 𝑛. Let A and B be matrices chosen uniformly in
ℤ and ℤ respectively. Then, for all vectors 𝒘 in ℤ , the

distribution A, AR, R 𝒘 is statistically close to the
distribution A, B, R 𝒘 .

III. CONSTRAINED SIGNATURE SCHEMES

Definition 1 (Constrained Signatures [20]). A constrained
signature scheme consists of four algorithms 𝛱
CS.Setup, CS.KeyGen, CS.Sign, CS.Verify over an attribute
space 𝒳, a signature space 𝒴, and a circuit class 𝒞 is defined
as:
 CS.Setup 1 → 𝑣𝑘, 𝑚𝑠𝑘 . CS.Setup is the initialization

algorithm that on input the security parameter 𝜆, output a
master secret key 𝑚𝑠𝑘 and a verification key 𝑣𝑘.

 CS.KeyGen 𝑚𝑠𝑘, 𝑓 → 𝑠𝑘 . On input the master secret
key 𝑚𝑠𝑘 and the constraint circuit 𝑓 ∈ 𝒞 , the
CS.KeyGen ⋅ outputs a constrained key 𝑠𝑘 .

 CS.Sign 𝑥, 𝑠𝑘 → 𝜎 . On input the attribute 𝑥 ∈ 𝒳 and a
constrained key𝑠𝑘 , the CS.Sign ⋅ outputs a signature
𝜎 ∈ 𝒴. The signature is correct if and only if 𝑓 𝑥 0.

 CS.Verify 𝑥, 𝜎 , 𝑣𝑘 → 0,1 . On input the attribute 𝑥, the
signature 𝜎 and the verification key 𝑣𝑘 , CS.Verify ⋅
outputs 1 for accepting the signature or 0 for rejecting the
signature.

The constrained signature scheme satisfies requirements for
correctness, unforgeability and privacy which are elaborated as
follows.
Correctness. The scheme is correct if for all 𝑥 ∈ 𝒳 and 𝑓 ∈ 𝒞
with 𝑓 𝑥 0, the following holds:

Pr CS.Verify 𝑥, 𝜎 , 𝑣𝑘
0

𝑣𝑘, 𝑚𝑠𝑘 ← CS.Setup 1
𝑠𝑘 ←CS.KeyGen 𝑚𝑠𝑘, 𝑓

𝜎 ←CS.Sign 𝑥, 𝑠𝑘
negl λ .

Unforgeability. We describe a message-selective
unforgeability experiment in which an adversary sends a
message before seeing any public parameters. In the
experiment, an adversary can make three kinds of queries: 1. a
query for a constrained key; 2. a query for a signature under a
specific constraint; 3. a query for a signature that is signed
under an existing key.

We define a security game between a challenger 𝒞 and an
adversary 𝒜 who can be described as a probabilistic
polynomial time machine (PPTM) as follows:
 The adversary 𝒜 sends 𝑥∗ that is the message for which it

intends to forge a signature to the challenger 𝒞;
 The challenger 𝒞 runs CS.Setup 1 to obtain 𝑚𝑠𝑘, 𝑣𝑘

and sends 𝑣𝑘 to the adversary 𝒜;
 Query phase:
 Key Queries. The adversary 𝒜 sends 𝑓 to the challenger,

and receives 𝑠𝑘 ← CS.KeyGen 𝑚𝑠𝑘, 𝑓 .
 Signature Queries. The adversary 𝒜 sends 𝑓, 𝑥 with

𝑓 𝑥 0 to the challenger. CS.KeyGen 𝑚𝑠𝑘, 𝑓 is
invoked by the challenger to get 𝑠𝑘 . Finally, the
challenger returns 𝜎 ← CS.Sign 𝑥, 𝑠𝑘 .

 Repeated Signature Queries. Adversary 𝒜 sends 𝑖, 𝑥 to
the challenger. If there are less than 𝑖 signature queries,
then the challenger returns ⊥. Assume the constraint in the
𝑖-th query is 𝑓 and the corresponding constrained key is
𝑠𝑘 . If 𝑓 𝑥 1, then the challenger returns ⊥. Otherwise,
the challenger returns 𝜎 ← CS.Sign 𝑥, 𝑠𝑘

 𝒜 outputs a 𝑥∗, 𝜎 ∗ such that CS.Verify 𝑣𝑘, 𝑥∗, 𝜎 ∗

1. For all 𝑓 ∈ 𝒞 queried by 𝒜 , 𝑓 𝑥∗ 1 and 𝒜 never
asks a signature for 𝑥∗. If all requirements are met, then 𝒜
wins the experiment.

A constrained signature scheme is message-selectively
unforgeable if Pr 𝒜 wins negl λ .
Privacy. Privacy guarantees the security of the signing key
after releasing the signed signatures. In a constrained signature
scheme, the privacy guarantees that the constraint function 𝑓 is
hidden.

Firstly, define a privacy game between an adversary 𝒜 and a
challenger 𝒞 as follows:
 The challenger 𝒞 runs 𝑣𝑘, 𝑚𝑠𝑘 ← CS.Setup 1 and

sends 𝑣𝑘 to the adversary 𝒜;
 𝒜 sends 𝑓 , 𝑓 , 𝑥 such that 𝑓 𝑥 𝑓 𝑥 0;
 The challenger computes 𝑠𝑘 CS.KeyGen 𝑚𝑠𝑘, 𝑓 and

𝑠𝑘 CS.KeyGen 𝑚𝑠𝑘, 𝑓 . Then, it samples uniformly
at random 𝑏 ← 0,1 and computes
𝜎 , ← CS.Sign 𝑥, 𝑠𝑘 . Finally, it sends 𝑠𝑘 , 𝑠𝑘 , 𝜎 ,
to 𝒜;

 𝒜 outputs a bit 𝑏′ and wins the game if 𝑏 𝑏′.
A constrained signature scheme is strongly-hiding if

Pr 𝒜 wins negl λ .
In [20], Tsabary constructs a constrained signature scheme

from lattice trapdoors. The security of his constrained signature
scheme is based on the SIS assumption. Our watermarking
signature scheme takes this constrained signature scheme as an
underlying component. For completeness, we describe
Tsabary’s scheme here.

The initialization parameters are 𝑡, 𝑑. The attribute space is
0,1 and the constraint space is all 𝑑 -depth circuits ℱ
𝑓: 0,1 → 0,1 . Define the constrained signature scheme

𝛱 CS.Setup, CS.KeyGen, CS.Sign, CS.Verify as:
 CS.Setup 1 → 𝑚𝑠𝑘, 𝑣𝑘 . Run A ∈ ℤ , TA ←

TrapGen 1 ; sample uniformly a matrix A⃗ ←
$

ℤ .

Output 𝑚𝑠𝑘 TA and 𝑣𝑘 A, A⃗ .

 CS.KeyGen 𝑚𝑠𝑘, 𝑓 → 𝑠𝑘 . Compute H EvalF 𝑓, A⃗

and A A⃗ ⋅ H . Then, obtain 𝑠𝑘 TA||A ←

ExtensionLeft A, TA .
 CS.Sign 𝑥, 𝑠𝑘 → 𝜎 . If 𝑓 𝑥 0 , then return ⊥ .

Otherwise, generate a trapdoor T for A||A⃗ 𝒙 ⊗ G
using the constraint secret signing key 𝑠𝑘 . Then, run

𝜎 ← SamplePre A||A⃗ 𝒙 ⊗ G , T, 0 to generate a
signature.

 CS.Verify 𝑥, 𝜎 , 𝑣𝑘 → 0,1 . Output 1 if 𝜎 0, 𝜎 ⊥,

A||A⃗ 𝒙 ⊗ G ⋅ 𝜎 0 and ∥ 𝜎 ∥ 𝐵 . Otherwise,
output 0.

An explanation for CS.Sign ⋅ procedure. Compute

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

273International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

H , EvalFX 𝑓, 𝑥, A⃗ . According to Theorem 4, A⃗ 𝑥 ⊗
G H , A 𝑓 𝑥 G A if 𝑓 𝑥 0 . For the following
matrices:

A‾ A||A ,  B‾ A||A⃗ 𝑥 ⊗ G ,  S
I 0
0 H ,

It holds that A‾ B‾ S. According to Theorem 3, there exists an
algorithm generating a trapdoor TB‾ with knowledge of 𝑠𝑘 .
Thus, it is practical to invoke SamplePre ∙ to compute a
signature for 𝑥.

Theorem 5 (Correctness, privacy, and unforgeability [20]).
The construction is correct, statistically key-hiding and
message-selectively unforgeable for 𝒳, ℱ .

IV. A WATERMARKING SCHEME FOR CONSTRAINED

SIGNATURES

Definition 4. A watermarking signature scheme is a tuple of
probabilistic polynomial time algorithms WM.Gen,
 SIG.Gen , SIG.Gen, Sign, Verify, Extract which is correct,
existentially unforgeable under the chosen message attack, and
𝜖-unremovability.
 WM.Gen 1 → 𝑒𝑘 . On input the security parameter 𝜆,

WM.Gen ⋅ outputs an extraction key 𝑒𝑘.
 SIG.Gen 1 → 𝑣𝑘 , 𝑠𝑘 . On input the security

parameter 𝜆, SIG.Gen outputs a verification key 𝑣𝑘 and
a secret key 𝑠𝑘 .

 SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘 → 𝑣𝑘, 𝑠𝑘 . On input the
security parameter 𝜆 , an extraction key 𝑒𝑘 , and an
embedded message 𝑚𝑠𝑔, SIG.Gen ⋅ outputs a pair of a
verification key 𝑣𝑘 and a secret key 𝑠𝑘.

 Sign 𝑣𝑘, 𝑠𝑘, 𝑥 → 𝛴 . On input a verification key 𝑣𝑘 , a
secret key 𝑠𝑘 and a message 𝑥, Sign ⋅ outputs a signature
𝛴 .

 Verify 𝑣𝑘, 𝑥, 𝛴 → 0,1 . On input a verification key 𝑣𝑘,
a message 𝑥 and a signature 𝛴 , Verify ⋅ outputs 0 for
rejecting the signature or 1 for accepting the signature.

 Extract 𝑒𝑘, 𝑣𝑘, 𝐶 → 𝑚𝑠𝑔, ⊥ . On input an extraction key
𝑒𝑘 , the verification key 𝑣𝑘 and a circuit 𝐶 , Extract ⋅
outputs an embedded message or a symbol ⊥.

Correctness. For every message x and embedded message
msg, the following holds:

Pr

⎣
⎢
⎢
⎢
⎢
⎡

Verify 𝑣𝑘, 𝑥, 𝛴 1 ∨

Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅
𝑚𝑠𝑔

𝑒𝑘 ← WM.Gen 1

𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1
𝑣𝑘, 𝑠𝑘 ← SIG.Gen

1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘
𝛴 ←Sign 𝑣𝑘, 𝑠𝑘, 𝑥 ⎦

⎥
⎥
⎥
⎥
⎤

negl λ .

(Selective-)Existential Unforgeability Under the Chosen
Message Attack. This notion is captured by an experiment
between a challenger and an attacker 𝒜 𝒜 , 𝒜 as:
Exp𝒜 𝜆 :
1. 𝑥∗ ← 𝒜 1

2. 𝑒𝑘 ← WM.Gen 1
3. 𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1
4. 𝑣𝑘, 𝑠𝑘 ← SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘

5. 𝜎∗ ← 𝒜sign ,⋅ 𝑣𝑘 . When the attacker requires a
signature for 𝑥∗, the challenger returns ⊥.

6. If Verify 𝑣𝑘, 𝑥∗, 𝜎∗ 1, output 1. Otherwise, output 0.
The watermarkable signature is (selective-)existential

unforgeable under the chosen message attack if
Pr[Exp𝒜 (𝜆)=1]≤negl λ .

 𝜖-Unremovability A.

Definition 5. Fix a security parameter 𝜆. For a watermarking
signature scheme 𝛱 WM.Gen, SIG.Gen , SIG.Gen,
Sign, Verify, Extract , we say an adversary 𝒜 𝒜 , 𝒜 is
unremoving-admissible if the following conditions hold:
 The adversary 𝒜 makes exactly one challenge query.
 The circuit 𝐶 output by the adversary 𝒜 possesses almost

the same distribution as the circuit 𝐶∗ output by the
challenger. Except 𝜖 of the whole message space, 𝐶 must
output a correct corresponding signature. Denote by
𝐶 ≊ 𝐶∗.

For every unremoving-admissible probabilistic polynomial
time adversary 𝒜 and an embedded message msg,

Pr

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐶 ≊ Sign ∗ ⋅ ∧

Extract 𝑒𝑘, 𝑣𝑘∗, 𝐶
𝑚𝑠𝑔∗

𝑒𝑘 ← WM.Gen 1

𝑚𝑠𝑔∗ ← 𝒜 1

𝑣𝑘 ,∗, 𝑠𝑘 ,∗ ← SIG.Gen 1
𝑣𝑘∗, 𝑠𝑘∗ ← SIG.Gen

1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 ,∗, 𝑠𝑘 ,∗

𝐶 ← 𝒜 SIG.Gen 1 , 𝑣𝑘∗, Sign ∗ ⋅ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

≤negl λ .

Remark. Definition 4 formulates a private-key watermarking
signature scheme. The extractor must possess the private key to
extract the message from the marked circuit. A stronger notion
for watermarking is publicly-extractable watermarking. The
extractor can extract the message without knowledge of the
private key. In [5], the definition for a watermarking signature
scheme is in the setting of public-key setting. In this work, we
consider a watermarking signature scheme in the private-key
setting and the marked circuit is embedded with a message
instead of merely a 𝑚𝑎𝑟𝑘 or 𝑢𝑛𝑚𝑎𝑟𝑘 label.

 A Concrete Scheme B.

To construct a watermarking signature scheme, a secure PRF
and a secure constrained signature scheme are required. We
suppose that a secure PRF 𝛱 PRF.Gen, PRF.Eval maps

0,1 to 0,1 . The watermarking signature scheme
𝛱 WM.Gen , SIG.Gen , SIG.Gen , Sign , Verify ,
Extract is defined as follows:

WM.Gen(1): Sample 𝑘∗ ← PRF.Gen 1 . Choose a set of
short matrices U ∈ ℤ with ∥ U ∥ 𝛽 for 𝑖 1, 2, … , 𝑡.
Uniformly sample h ∈ 0,1 for 𝑗 1, 2. . . , 𝑑 and a matrix

B ←
$

1, 1 . Set an extraction key as 𝑒𝑘

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

274International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

𝑘∗, B, U , … , U , h , . . . , h .
SIG.Gen 1 : A ∈ ℤ , TA ← 𝑇𝑟𝑎𝑝𝐺𝑒𝑛 1 , 1 , 𝑞 ;

sample uniformly a matrix A⃗ ←
$

ℤ . And set 𝑣𝑘

A, A⃗ and 𝑠𝑘 TA.
SIG.Gen(1 , 𝑒𝑘, 𝑚𝑠𝑔, 𝑣𝑘 , 𝑠𝑘)： Compute c c , c , c ,

c , . .. c , c ← PRF.Eval 𝑘∗, Ah , . . . , Ah and c
ABc for 𝑖 1,2, … , 𝑡.
 We suppose that 𝑓 is the function to determine whether the

signed message is equal to one element of a 𝑡-size set.
Specifically, 𝑓 ⋁ 𝑒 𝑞 𝑥, 𝑦 , where e 𝑞 𝑥, 𝑦 1 if
𝑥 𝑦 and 𝑒𝑞 𝑥, 𝑦 0 if 𝑥 𝑦 . The function 𝑓 is
defined with respect to the marked message msg, namely,
𝑦 c for 𝑖 1, 2. . . , 𝑡.

 We compute H ← EvalF 𝑓, A⃗ . And A A⃗ ⋅ H . Then,
we obtain 𝑠𝑘 ← ExtensionTrap 𝑠𝑘 , A||A with
𝑠𝑘 TA.

Set 𝑣𝑘 A, A⃗, c , 𝑠𝑘 𝑠𝑘 , U , … , U .
Sign(𝑣𝑘, 𝑠𝑘, 𝑥): Procedure Sign(⋅) signs almost all x’s from

domain except several points that are relative to the marked
message and the outputs of the PRF.
 If 𝑓 𝑥 0, return ⊥.

 Otherwise, generate a trapdoor T for A||A⃗ 𝑥 ⊗ G
using the constraint signing key 𝑠𝑘 . Then, generate the

signature 𝜎 ← SamplePre A||A⃗ 𝑥 ⊗ G , T, 0 .
 V AU𝒊 𝑥 G , and H A|V 𝑥 1 G , where

𝑥 is the 𝑖-th bit of 𝑥. Set 𝜎 SampleRight H , U , c

for 𝑖 1, . . . , 𝑡. 𝜎 ∈ ℤ . ∥ 𝜎 ∥ 𝛽√𝑚𝑚′√𝑚 𝑚′.
 Output 𝛴 𝜎 , V , 𝜎 as the signature for 𝑥.

Verify(𝑣𝑘, 𝑥, 𝛴): Express 𝛴 𝜎 , V , 𝜎 as the
signature for 𝑥. If the following three conditions are satisfied,
output is 1; otherwise, 0.

 𝜎 ⊥and ∥ 𝜎 ∥ 𝛽√𝑚𝑚′√𝑚 𝑚′ for all 𝑖 1, 2, … , 𝑡.
 A|V 𝑥 1 G ⋅ 𝜎 c for all 𝑖 1, 2, … , 𝑡.

 A||A⃗ 𝑥 ⊗ G ⋅ 𝜎 0 and ∥ 𝜎 ∥ 𝐵 , 𝜎 ⊥ ,
𝜎 0.

Extract(𝑒𝑘, 𝑣𝑘, Sign ⋅): For an arbitrary valid signature,

parse a signature 𝛴 for a message 𝑥 into 𝜎 , V , 𝜎 .
 Compute c c , c , c , c , . .. c , c ←

PRF.Eval 𝑘∗, Ah , . . . , Ah .
 If A|V 𝑥 1 G ⋅ 𝜎 ABc or Sign c =⊥, then

𝑚𝑠𝑔 0 ; if A|V 𝑥 1 G ⋅ 𝜎 ABc or
Sign c = ⊥ , 𝑚𝑠𝑔 1 , for all 𝑖 1, 2, . . . , 𝑡 .
Otherwise, output ⊥.

 Parameter Choices C.

For the above scheme, we require that 𝛽 𝑞 , 𝑛 𝜆 ,
𝑞 2 , 𝑡 𝑝𝑜𝑙𝑦 𝜆 2 , 𝑚 𝑛⌈log𝑞⌉ and 𝑚′
max 𝑚 , 𝑛 1 ⌈log𝑞⌉ 2𝜆 , where 𝑚 is required in

Theorem 2. 𝐵 𝜏√𝑡2 𝑚 √𝑚′ 𝑡𝑚 , where 𝜏 is set to be

max √𝑚′𝑡2 𝑚 . , 𝑂 𝑛⌈log𝑞⌉log𝑛 and 𝑘 is the depth of
circuit 𝑓. All parameters are required identically to those in
[20].

V. SECURITY PROOFS

In this section, we prove that the watermarking scheme for
constrained signatures in Section IV.B satisfies properties of
verification correctness, extraction correctness, existential
unforgeability, privacy, and 𝜖-unremovability.

 Correctness A.

Theorem 6. If parameters are chosen as above, then the
construction of watermarking signature scheme is correct.
Proof. For convenience, we use the same set of notations from
Section IV.B. Suppose that a signature 𝛴 for a message 𝑥 is
output by the procedure Sign ⋅ which is a watermarked circuit
with a message “ 𝑚𝑠𝑔 ”. Next, we will prove that
Verify 𝑣𝑘, 𝑥, 𝛴 1 and Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅ 𝑚𝑠𝑔
where 𝑚𝑠𝑔 is the correct embedded message with non-
negligible probability.

First, we prove that Verify 𝑣𝑘, 𝑥, 𝛴 1 . Suppose that
𝛴 𝜎 , V , 𝜎 . According to Corollary 2, 𝜎 follows a
distribution that is not far from the Discrete Gaussian

Distribution 𝒟
ℤ ,

 𝜏 𝑂 √𝑚𝑚′𝛽 .

Lemma 1 states that 𝜎 is bounded by 𝜏√𝑚′ 𝑚 with
non-negligible probability. Thus, the first condition holds. The
equation A|V 𝑥 1 G ⋅ 𝜎 c holds for all 𝑖
1,2, … , 𝑡. This is guaranteed by the procedure SampleRight .
Thus, the second condition holds. The remaining verification
holds due to the correctness of underlying constrained signature
scheme in [20].

Secondly, we prove that Extract 𝑒𝑘, 𝑣𝑘, Sign ⋅ 𝑚𝑠𝑔.

Since the secret key 𝑘∗ is shared by both SIG.Gen ⋅ and
Extract ⋅ , the vectors c’s are identical in these two procedures.
Moreover, the procedure SampleRight guarantees the
correctness of verification equations in Extract ⋅ . The
Sign ⋅ condition is used additionally to choose the correct
message bit since the Sign ⋅ can not sign a signature for

𝒄 for all 𝑖 1, 2. . . , 𝑡.

 (Selective) Existential Unforgeability under Chosen B.
Message Attack

Theorem 7. If the PRF is secure and the underlying constrained
signature scheme is selectively existential unforgeable under
chosen message attack, under the SIS , , , assumption where

𝐷 𝑚 1 𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′ , then the watermarking
signature scheme in the above section is selectively existential
unforgeable under chosen message attack.
Proof. In our scheme, the signature 𝛴 for a message 𝑥 is
composed of two parts: one is generated by the underlying
constrained signature; the other is generated by SampleRight ⋅
algorithm. Thus, we prove these two parts are unforgeable
separately.

We assume that there exists an adversary 𝒜 who can
successfully forge a signature in the selective setting for the
watermarking signature scheme with non-negligible
probability, then there exists an adversary 𝒞 who can break
SIS , , , . At the beginning of the unforgeability experiment,
the adversary sends a message 𝑥∗ as its challenge.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

275International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

We firstly prove that under the SIS , , , assumption, the
second part of the signature 𝛴 is unforgeable. By Theorem 2,
the matrix A is sampled approximately uniformly at random.
By our construction, matrices U are sampled uniformly at
random. Thus, the matrix AU is sampled uniformly at random.
Uniformly at random sample a matrix R from 1, 1 .
According to the leftover hash lemma (Lemma 2), if we set
AU AR 2𝑥∗ 1 G, then the distribution of signature 𝛴
will not change. If the adversary successfully forges a signature
component 𝜎∗, then according to our construction, we have:

A|V 𝑥∗ 1 G 𝜎∗ ABc .

If we write 𝜎∗ 𝜎∗ , 𝜎∗ , then the above equation implies:

A 𝜎∗ R 𝜎∗ Bc 0.

Since

‖𝜎∗ R 𝜎∗ Bc ‖

𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′,

𝜎∗ R 𝜎∗ Bc is a valid solution to SIS , , , where

𝐷 𝑚 1 𝛽√𝑚𝑚′√𝑚 𝑚′ 𝑚′.
Next, we prove that the first part is unforgeable. Assume that

there exists an adversary 𝒜 who can successfully forge a
signature in the selective setting for the watermarking signature
scheme with non-negligible probability, then there exists an
adversary ℬ who can forge a signature for the constrained
signature scheme with overwhelming probability.

When 𝒜 makes a challenge query to require the signature
for 𝑥∗ , adversary ℬ trivially send 𝑥∗ to the challenger. The

challenger sends A, A⃗ chosen as in the constrained signature
scheme as the verification key to ℬ . Before answering any
signature query from the adversary 𝒜 for 𝑥 𝑥∗, adversary ℬ
randomly chooses c , c , . . . , c ∈ ℤ and output
A, A⃗, c , c , . . . , c as the verification key to adversary 𝒜 .

Adversary ℬ chooses a set of short matrices U as a secret.
Since the underlying PRF is secure, this modification is
indistinguishable from the real SIG.Gen ⋅ of the
watermarking signature scheme except the generation of the
constrained secret signing key. When adversary 𝒜 requires a
signature for 𝑥 , adversary ℬ trivially sends 𝑥 and a function
𝑓 𝑧 𝑧 𝑥 to the challenger. Meanwhile, adversary ℬ runs
𝜎 ← SampleRight A|AU 2𝑥 1 G , c and sends AU
𝑥 G, 𝜎 along with the signature 𝜎 from the challenger to
adversary 𝒜 as the final signature for 𝑥. Obviously, adversary
ℬ perfectly simulates the watermarking signature scheme for
adversary 𝒜 . When adversary 𝒜 aborts the experiment, it
would send a signature 𝛴 ∗ as the forge to ℬ. Adversary ℬ just
extracts the corresponding part as the signature forge for 𝑥∗ in
the experiment for breaking the underlying constrained
signature scheme. Hence, ℬ has at least the same advantage as
𝒜 to win the experiment. Since the underlying constrained
signature scheme is selectively existential unforgeable under
chosen message attack, this is a contradiction.

 Privacy C.

In this section, we treat our construction in Section IV.B as a
constrained signature scheme. In the following, we prove our
constrained signature scheme satisfies privacy.
Theorem 8. If the PRF is secure, the underlying constrained
signature scheme is strongly-hiding, then the watermarking
scheme for signatures is strongly-hiding.
Proof. Since the PRF is secure, c , c , c , c , . .. c , c is
indistinguishable from uniform random variables. By the
leftover hash lemma, AB is sampled approximately uniformly
at random. Thus, for all 𝑏 ∈ 0,1 and 𝑖 ∈ 𝑡 , ABc follows a
distribution which is not far from uniform sampling. In other
words, for all 𝑏 ∈ 0,1 and 𝑖 ∈ 𝑡 , c is hidden from ABc .
By Theorem 5, the underlying constrained signature scheme is
strongly-hiding. Therefore, the property of hiding the constraint
functions is implied by the privacy of the underlying
constrained signature scheme.

 ϵ-Unremovability D.

Before proving the unremovability of the constructed
watermarking signature scheme, the experiment game between
an adversary and a challenger is defined in the following. An
adversary is allowed to make queries to a marking oracle for
more than once while make queries to a challenge oracle
merely once.

Experiment I.
 Setup Phase. Sample 𝑘∗ ← PRF.Gen 1 . Choose a set of

short matrices U ∈ ℤ with ∥ U ∥ 𝛽 for 𝑖
1, 2 … , 𝑡 . Uniformly sample h ∈ 0,1 for 𝑗 1, 2. . . , 𝑑

and a matrix B ←
$

1,1 . Set
𝑒𝑘 𝑘∗, B, U , … , U , h , . . . , h .

 Query Phase.
 Marking Oracle. The adversary uniformly samples a

matirx A⃗ ←
$

ℤ and runs A ∈ ℤ , TA ←
TrapGen 1 , 1 , 𝑞 , then sends A, TA and a message
𝑚𝑠𝑔 that it would like to embed. The challenger does the
subsequent steps as in SIG.Gen ⋅ . Then, the challenger
sends a Sign ⋅ circuit to the adversary.

 Challenge Oracle. The adversary chooses a challenge
message 𝑚𝑠𝑔∗ sent to the challenger. The challenger runs
𝑣𝑘 , 𝑠𝑘 ← SIG.Gen 1 and runs 𝑣𝑘∗, 𝑠𝑘∗ ←

SIG.Gen 1 , 𝑒𝑘, 𝑚𝑠𝑔∗, 𝑣𝑘 , 𝑠𝑘 . Then, it sends a
challenge circuit Sign ∗ ⋅ and the public verification key

𝑣𝑘∗ to the adversary.
 Challenge Phase. The adversary outputs a circuit

Sign ∗ ⋅ .

 Extraction Phase. For an arbitrary valid signature 𝛴
output by the circuit Sign ∗ ⋅ , the extractor parses 𝛴 into

𝜎 , V , 𝜎 . Then, it does the following calculation:

 Compute c c , c , c , cc , . .. c , c ← PRF.Eval 𝑘∗ ,
Ah , . .., Ah .

 For all 𝑖 1, 2, . . . , 𝑡 , if A||V 𝑥 1 G ⋅ 𝜎 AB ⋅
c or Sign ∗ c ⊥, then 𝑚𝑠𝑔 0; if A||V 𝑥

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

276International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

1 G ⋅ 𝜎 AB ⋅ c or Sign ∗ c ⊥ , then 𝑚𝑠𝑔 1 .

Otherwise, output ⊥.
Here, A is part of the verification key for the challenge

signature circuit.
Theorem 9. For any efficient and unremoving-admissible
adversary 𝒜, the constructed watermarking signature scheme
possesses unremovability property.
Proof. The unremovability of our scheme is obvious.
Removing an embedded message is equivalent to modifying
part of the signature verification key.
Remark. When a watermarked signature scheme is distributed,
the verification key is considered to be hard to change.

VI. CONCLUSION

In this work, we construct a watermarking scheme for
constrained signatures under a standard lattice assumption in
the symmetric key setting. This is the first concrete
watermarking scheme for signatures with hidden watermarks
and constraint functions in the symmetric key setting.

Our construction adopts the methods in [9] and [5] to embed
a message in the original program. We adopt a constrained
signature scheme described in [20] as part of the whole
signature scheme. To hide the watermark, we use
randomization. One shortcoming is that we expand the size of a
signature. Possible future works include how to reduce the
signature size, how to design a watermarking scheme for
signatures with both hidden watermarks and constraint
functions in the public-key setting. We also believe that the
techniques we used in the paper may provide insights for other
researchers in constructing watermarking schemes for other
cryptographic constructions.

REFERENCES
[1] A. Adelsbach, S. Katzenbeisser, and H. Veith, “Watermarking schemes

provably secure against copy and ambiguity attacks,” in Proceedings of
the 3rd ACM workshop on Digital rights management. ACM, 2003, pp.
111–119.

[2] C. I. Podilchuk and E. J. Delp, “Digital watermarking: algorithms and
applications,” IEEE signal processing Magazine, vol. 18, no. 4, pp. 33–
46, 2001.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” in
Annual International Cryptology Conference. Springer, 2001, pp. 1–18.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” Journal
of the ACM (JACM), vol. 59, no. 2, p. 6, 2012.

[5] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs,
“Watermarking cryptographic capabilities,” in Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing. ACM,
2016, pp. 1115–1127.

[6] D. Naccache, A. Shamir, and J. P. Stern, “How to copyright a function?”
in International Workshop on Public Key Cryptography. Springer, 1999,
pp.188–196.

[7] M. Yoshida and T. Fujiwara, “Toward digital watermarking for
cryp-tographic data,” IEICE transactions on fundamentals of electronics,
communications and computer sciences, vol. 94, no. 1, pp. 270–272,
2011.

[8] R. Nishimaki, “How to watermark cryptographic functions,” in Annual
International Conference on the Theory and Applications of
Crypto-graphic Techniques. Springer, 2013, pp. 111–125.

[9] S. Kim and D. J. Wu, “Watermarking cryptographic functionalities from
standard lattice assumptions,” in Annual International Cryptology
Conference. Springer, 2017, pp. 503–536.

[10] W. Quach, D. Wichs, and G. Zirdelis, “Watermarking prfs under standard
assumptions: Public marking and security with extraction queries,” in
Theory of Cryptography Conference. Springer, 2018, pp. 669–698.

[11] R. Yang, M. H. Au, J. Lai, Q. Xu, and Z. Yu, “Collusion resistant
watermarking schemes for cryptographic functionalities,” in
Interna-tional Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2019, pp. 371–398.

[12] S. Kim and D. J. Wu, “Watermarking prfs from lattices: Stronger security
via extractable prfs,” in Annual International Cryptology Conference.
Springer, 2019, pp. 335–366.

[13] F. Baldimtsi, A. Kiayias, and K. Samari, “Watermarking public-key
cryptographic functionalities and implementations,” in International
Conference on Information Security. Springer, 2017, pp. 173–191.

[14] R. Goyal, S. Kim, N. Manohar, B. Waters, and D. J. Wu, “Watermarking
public-key cryptographic primitives,” in Annual International
Cryptolo-gy Conference. Springer, 2019, pp. 367–398.

[15] N. Hopper, D. Molnar, and D. Wagner, “From weak to strong
water-marking,” in Theory of Cryptography Conference. Springer, 2007,
pp. 362–382.

[16] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing.
ACM, 1996, pp. 99–108.

[17] D. Micciancio, “Almost perfect lattices, the covering radius problem, and
applications to ajtai’s connection factor,” SIAM Journal on Computing,
vol. 34, no. 1, pp. 118–169, 2004.

[18] D. Micciancio and O. Regev, “Worst-case to average-case reductions
based on gaussian measures,” SIAM Journal on Computing, vol. 37, no. 1,
pp. 267–302, 2007.

[19] D. Micciancio and C. Peikert, “Hardness of sis and lwe with small
parameters,” in Advances in Cryptology–CRYPTO 2013. Springer, 2013,
pp. 21–39.

[20] R. Tsabary, “An equivalence between attribute-based signatures and
homomorphic signatures, and new constructions for both,” in Theory of
Cryptography Conference. Springer, 2017, pp. 489–518.

[21] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2012, pp. 700– 718.

[22] S. Agrawal, D. Boneh, and X. Boyen, “Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical ibe,” in Annual Cryptology
Conference. Springer, 2010, pp. 98–115.

[23] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in the
standard model,” in Annual Inter-national Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2010, pp. 553–572.

[24] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 75–92.

[25] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polynomial
error,” in International Cryptology Conference. Springer, 2014, pp. 297–
314.

[26] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy, “Fully key-homomorphic
encryption, arithmetic circuit abe and compact garbled circuits,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2014, pp. 533–556.

[27] S. Gorbunov, V. Vaikuntanathan, and D. Wichs, “Leveled fully
homo-morphic signatures from standard lattices,” in Proceedings of the
forty-seventh annual ACM symposium on Theory of computing. ACM,
2015, pp.469–477.

[28] Z. Brakerski and V. Vaikuntanathan, “Constrained key-homomorphic
prfs from standard lattice assumptions,” in Theory of Cryptography
Conference. Springer, 2015, pp. 1–30.

[29] Z. Brakerski, D. Cash, R. Tsabary, and H. Wee, “Targeted homomorphic
attribute-based encryption,” in Theory of Cryptography Conference.
Springer, 2016, pp. 330-360.

[30] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data,” SIAM
journal on computing, vol. 38, no. 1, pp. 97-139, 2008.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:14, No:7, 2020

277International Scholarly and Scientific Research & Innovation 14(7) 2020 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
7,

 2
02

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
33

5.
pd

f

