
 

 

 
Abstract—To improve the registration accuracy of a source point 

cloud and template point cloud when the initial relative deflection 
angle is too large, a PointNetLK algorithm combined with an oriented 
bounding box (PointNetLK-OBB) is proposed. In this algorithm, the 
OBB of a 3D point cloud is used to represent the macro feature of 
source and template point clouds. Under the guidance of the iterative 
closest point algorithm, the OBB of the source and template point 
clouds is aligned, and a mirror symmetry effect is produced between 
them. According to the fitting degree of the source and template point 
clouds, the mirror symmetry plane is detected, and the optimal rotation 
and translation of the source point cloud is obtained to complete the 
3D point cloud registration task. To verify the effectiveness of the 
proposed algorithm, a comparative experiment was performed using 
the publicly available ModelNet40 dataset. The experimental results 
demonstrate that, compared with PointNetLK, PointNetLK-OBB 
improves the registration accuracy of the source and template point 
clouds when the initial relative deflection angle is too large, and the 
sensitivity of the initial relative position between the source point 
cloud and template point cloud is reduced. The primary contribution of 
this paper is the use of PointNetLK to avoid the non-convex problem 
of traditional point cloud registration and leveraging the regularity of 
the OBB to avoid the local optimization problem in the PointNetLK 
context.  
 

Keywords—Mirror symmetry, oriented bounding box, point cloud 
registration, PointNetLK-OBB. 

I. INTRODUCTION 

N recent years, as depth sensors have become more 
affordable, equipment that can directly obtain 3D data is 

becoming increasingly popular. As simple and effective 
representations of 3D data, 3D point clouds are widely used in 
robotics, autonomous driving, and virtual and augmented 
reality applications. Recently, 3D point cloud registration 
algorithms, which obtain the transformation matrix between the 
point clouds to be registered by estimating the corresponding 
relationship between them, have received considerable research 
attention [1]-[4]. These research studies primarily focus on the 
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accuracy, time efficiency, and robustness of 3D point cloud 
registration, and various methods have been proposed. 
Previously proposed point cloud registration methods can be 
classified as traditional methods based on deep learning and 
methods based on local descriptors. 

Besl et al. proposed an iterative closest point (ICP) 
algorithm, a classic 3D point cloud registration algorithm. 
Their proposed algorithm uses the least square method and 
singular value decomposition to estimate the transformation 
parameter between two point clouds to be registered and update 
the corresponding relationship between point clouds using the 
obtained transformation parameters. These steps are iterated 
until 3D point cloud registration is complete [5]. The ICP 
algorithm is often used in the fine registration stage. In 
subsequent research, Segal et al. proposed Generalized-ICP, 
which combined ICP and Point-to-Plane ICP and improved the 
algorithm’s robustness against noise and occlusion [6]. Bouaziz 
et al. redefined ICP by using sparse induced norm, and 
improved the robustness of ICP for external and incomplete 
point cloud data [7]. Biber et al. used normal distribution 
transformation and Newton’s method to simplify the process of 
exploring the correspondence between point clouds [8]. 
Agamennoni et al. applied statistical inference technology to 
the full probability model, proposed a new probabilistic data 
association strategy, and improved the robustness of 
registration algorithm for external points and noises [9]. Yang 
et al. proposed the TEASER method, which eliminated the 
interference of external points by using truncated least squares 
and semi-definite relaxation optimization [10]. However, due 
to non-convex problems, registration accuracy is highly 
dependent on the initial relative positions of the source and 
template point clouds. If the initial relative deflection angle 
between the clouds to be registered is too large, the ICP will fall 
into local optimum and registration accuracy will be reduced. 
To find the global optimal solution, Yang et al. proposed 
Go-ICP, which used the branch-and-bound method to search 
the 3D transformation space [11]. Although Go-ICP can obtain 
the global optimal solution, the time complexity of the 
algorithm is several times that of ICP and its improved 
algorithm; thus, Go-ICP cannot meet real-time requirements. 
Other studies on global optimal solutions for point cloud 
registration, investigate mixed integer programming, Riemann 
optimization, and convex relaxation [12]-[14]. 

The traditional 3D point cloud registration method is both a 
non-convex and computationally inefficient problem. The 
traditional method needs to clearly estimate the correspondence 
between point clouds and computational efficiency will 
decrease as the number of points to be registered increases. 
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With the development of deep learning technology, solutions 
that address the problems with traditional 3D point cloud 
registration methods have been proposed [15]-[17]. 

Aoki et al. introduced deep learning into 3D point cloud 
registration. They proposed PointNetLK, which uses the 
PointNet deep neural network and the modified LK algorithm 
to complete 3D point cloud registration [18]-[20]. PointNetLK 
outperformed the traditional algorithm in terms of registration 
efficiency. Inspired by PointNetLK, PCRNet [21] used 
PointNet to extract 3D point clouds features and adopted a 
neural network with Siamese architecture to concatenate 
feature vectors among point clouds. The learning method was 
used to obtain point cloud transformation parameters non- 
iteratively, which improved the anti-interference ability of the 
algorithm to some extent. 

To find the correspondence between source and template 
point clouds, some researchers have attempted to design local 
descriptors, such as scale-invariant curvature descriptors and 
FPFH [22], [23]. Due to the limitation of manual design 
features, some studies investigated using deep learning to 
extract 3D local descriptors. For example, 3DMatch employs 
self-supervised learning of local feature descriptors from 
RGBD 3D reconstruction data [24]. PPFNet combines the local 
and global characteristics of point clouds to train local 
descriptors with global information [25], and Ppf-foldnet uses 
unsupervised learning to obtain local descriptors with rotation 
invariance [26]. However, these methods are not generalizable 
and can only be applied to specific scenarios. 

PointNetLK, which is based on deep learning, uses the 
PointNet network to reduce the dimension of the point cloud so 
that the time complexity of the algorithm does not increase as 
the number of points increases. PointNetLK can be extended to 
a wide range of application scenarios. PointNetLK considers 
PointNet as the "imaging" function of a 3D point cloud and uses 
the 2D optical flow tracking algorithm LK to align the obtained 
"image" and avoids the non-convex problem of the traditional 
3D point cloud registration algorithm. However, PointNet does 
not have a convolutional structure; thus, the extracted point 
cloud features lack local information on the point cloud surface 
and will fall into another form of the non-convex problem. The 
direct result is that when the deviation angle of two point clouds 
is too large, registration accuracy will be reduced. 

This paper attempts to improve the PointNetLK algorithm to 
solve this problem. 

II. ORIGINAL POINTNETLK ALGORITHM 

To reduce the computational cost of point cloud registration, 
PointNetLK uses deep learning technology to extract point 
cloud features and reduce the dimension of the point cloud. 
This process can be understood as "imaging" a point cloud. 
After obtaining the "image" of the source and template point 
clouds, PointNetLK uses LK, a 2D optical flow tracking 
algorithm, to obtain the transformation parameters between the 
two "images"; thus deriving the twist parameters between the 
3D point clouds and completing the registration. However, the 
PointNet network, which is used to extract point cloud features, 
does not have a convolution structure, and only the 

macroscopic point cloud features with coordinate information 
can be obtained. Consequently, PointNet becomes a multi-peak 
"imaging" function, as shown in Fig. 3, and, as a result, 
PointNetLK falls into a non-convex optimization problem. 

In the following, the matrix and 3D point set are represented 
by upper case bold and italicized letters (e.g., P ), column 
vectors and n-dimensional points are represented in lowercase 
bold italics (e.g., t ), constants are represented in uppercase 
italics (e.g., M ), and scalars are represented in lowercase 
italics (e.g., j ). 

A. General Target of 3D Point Cloud Registration 

We use 
3

1{ | }N
i i i P p p   and 3

1{ | }M
j j j Q q q   to 

represent 3D point clouds, where M  and N  represent the 
number of 3D points. For 3D point clouds, the registration task 
is to find rotation matrix 3 3R   and translation vector 

3 1t   so as to minimize the sum of the distance between 
corresponding points, as shown in: 

 

2
, =1

min ( )arg
L

k k
k

p q 
R t

R t         (1) 

 

where  min , L M N . 

The rotation matrix R  and the translation vector t  are 
usually expressed in homogeneous form as: 

 

4 4

    

    1


 
  
 

R t
T

0
            (2) 

 
The expected effect of 3D point cloud registration is shown 

in Fig. 1. The traditional registration algorithm requires all 
points in the point cloud to participate in the registration 
process; thus, the run time of the algorithm increases relative to 
the scale of the point cloud. By leveraging deep learning 
technology, features suitable for the registration target can be 
extracted from the point cloud. With this technology, the 
dimension of the features is far smaller than the scale of the 
original point cloud, which is expected to reduce the 
computational cost and solve the multi-extremum optimization 
problem that occurs in the traditional iterative registration 
algorithm, i.e., the non-convex problem. 

 

 

(a) Before registration      (b) After registration 

Fig. 1 Registration process of guitar point cloud 
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B. Point Cloud Feature Extraction in PointNetLK 

As described in Section II A, 3D point cloud P  and Q  are 

represented in matrix form, i.e., 3 NP   and 3 MQ  .  

PointNet is considered an imaging function of a 3D point 
cloud: 3: N K   . Function   applies a multi-layer 
perceptron (MLP) to each point in the 3D point cloud, which 
transforms N  3D points into N  k-dimensional points, i.e., 

3 N K N   , and then performs the max pooling operation. 
From the N  k-dimensional points, the most significant point is 
selected as the k-dimensional global feature vector of the 3D 
point cloud, i.e., K N K   , the "image" of the 3D point 
cloud. 

Although   plays a role in the dimensional reduction of the 
3D point cloud, thereby reducing computational costs, it is a 
MLP deep neural network that lacks convolutional structure 
and cannot extract local microscopic point cloud surface 
features. This will result in ( ) P  and ( ) Q  reflecting only 

the macroscopic contour features of point clouds P  and Q . 

The LK algorithm cannot capture the difference in surface 
detail coordinate information between the point clouds to be 
registered. Consequently, registration tends to fall into non- 
convex problems and remain in the locally optimal state. 

C. Exponential Mapping: The Link between Optical Flow 
Tracing and Point Cloud Transformation 

In Section II A, the rotation matrix R  and translation vector 
t  are used to represent the coordinate transformation T  in 3D 
space. To easily obtain the updated parameters of the 
coordinate transformation matrix using the LK algorithm, the 
exponential mapping form is used to represent the coordinate 
transformation in 3D space. The spatial coordinate 
transformation matrix T  is expressed as: 

 

 
6

1 2 6
1

exp   , ,...,i i
i

   


 
  

 
T G         (3) 

 
Here, 

iG  is as follows: 

 

1

0  0  0  1

0  0  0  0

0  0  0  0

0  0  0  0

 
 
   
  
 

G , 
2

0  0  0  0

0  0  0  1

0  0  0  0

0  0  0  0

 
 
   
  
 

G , 
3

0  0  0  0

0  0  0  0

0  0  0  1

0  0  0  0

 
 
   
  
 

G  

 
4

0  0  0  0

0  0 -1  0

0  1  0  0

0  0  0  0

 
 
   
  
 

G , 
5

0  0  1  0

0  0  0  0

-1 0  0  0

0  0  0  0

 
 
   
  
 

G , 
6

0 -1  0  0

1  0  0   0

0  0  0  0

0  0  0  0

 
 
   
  
 

G  

 

iG  is the generating operator of exponential mapping, which 

corresponds to the rotation parameter 
i  one by one. If P  is 

considered a template point cloud and Q  is considered a 

source point cloud, the target of 3D point cloud registration can 
be transformed into finding the best 3D space coordinate 
transformation T , i.e.,  

     P T Q          (4) 

 

Here, represents the coordinate transformation of source point 
cloud Q  in 3D space. 

D. Combination of Registration Target and Optical Flow 
Tracking 

During the registration process, the source point cloud’s 
coordinates change dynamically. With reference to the inverse 
combinational LK algorithm [27], the iterative process of the 
algorithm can be completed by calculating the 3D coordinate 
change rate of the template point cloud P  with respect to the 
infinitesimal twist parameter   only once, thus reducing the 
computational cost. According to this idea, the form of the 
registration target is changed to: 

 

   1   Q T P          (5) 

 
The right side of (5) can be expanded as: 
 

     1+        
Q P T P 


       (6) 

 

where 1T  is as follows: 
 

6
1

1

exp i i
i





 
  

 
T G        (7) 

 
For the convenience of computing, the finite difference 

gradient is used to approximate the gradient of   for the twist 
parameter  . Jacobian matrix is represented by J : 

 

 1=     
J T P          (8) 

 
Then, the calculation process of column 

iJ  in J  is as: 

 

    exp i i
i

i




    


G P P
J        (9) 

 
where 

i  takes a very small, fixed value rather than an 

infinitesimal value. The twist parameter   can be calculated 
as:  
 

        J Q P         (10) 

 
where J  is the generalized inverse of J . 

In the iterative registration process, the twist parameter   is 
used to update the source point cloud Q  in each iteration, as: 

 

 T Q Q   
6

1

exp i i
i




 
  

 
T G       (11) 

 
After the PointNetLK iteration phase, the 3D coordinate 
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transformation matrix of the source point cloud can be 
expressed as: 

 

PointNetLK 1 0= ...n     T T T T       (12) 
 

PointNetLK avoids the non-convex problem of traditional 
iterative registration. However, because PointNet does not have 
a convolutional structure, only the macroscopic features of the 
point cloud containing coordinate information can be extracted. 
When the point cloud deflection angle is too large, the 
registration algorithm will fall into a new local optimal problem. 
The intuitive registration result is shown in Fig. 2. 

 
Potted plants with initial deflection of 160  

 

(a) Initial state    (b) End of PointNetLK 
Person with an initial deflection of 160  

 

 

(a) Initial state    (b) End of PointNetLK 

Fig. 2 Registration results of point clouds with larger deflection angle 
in PointNetLK phase 

 

We consider PointNet as a function     of the twist 

parameter  . When the initial deflection angle of the source 
and template point clouds is too large, using the LK algorithm 
to iteratively update   will result in at least two different twist 

parameters 
1  and 

2 , making    1 2   . In this case, 

the right side of (8) is zero, and   stops updating. The 
registration algorithm falls into a local optimum, and 
registration accuracy is lost, as shown in Fig. 3. 

III. IMPROVEMENT OF POINTNETLK ALGORITHM 

As shown in Fig. 3, PointNetLK falls into a local optimum 
when the initial relative deflection angle of the source and 
template point clouds is too large. This paper proposes the 
PointNetLK-OBB algorithm to address this problem. Based on 
PointNetLK, PointNetLK-OBB uses a 3D geometry tool, i.e., 
an OBB, that can describe the global regularity of point clouds 

[28]. Under the guidance of ICP, it avoids the non-convex 
problem associated with PointNetLK. Therefore, the 
registration accuracy between point clouds with excessively 
large deflection angles is improved. 

 

 

Fig. 3 Schematic diagram of PointNetLK falling into local optimum 
when updating  with the LK algorithm 

A. OBB Construction 

The OBB refers to the smallest volume that can enclose a 3D 
point cloud. It is usually represented by a center point 3c  , 

three orthogonal unit vectors  3 3 3    ， ，u v w    

representing directions, and three scalar variables  , ,l w h  

representing the length, width, and height extension radius, 
respectively. 

Similar to an OBB, the Axis Aligned Bounding Box (AABB) 
of a 3D point cloud is a geometric description tool in 3D space. 
We consider the OBB and AABB of the general point cloud 

3 NX  , denoted O B B X
 and A A B B X

respectively. O B B X

can be considered the AABB of the point cloud X  after a 
certain space rotation 3 3R  : 

 

OBB =AABB  ' '    X X X R X       (13) 

 
Therefore, the problem of solving the OBB is transformed 

into finding a suitable 3D rotation (3, )SOR   from the 

special orthogonal group such that the AABB volume is the 
smallest: 

 

(3, )
min ( )
SO

l w h


 
R 

         (14) 

 s.t.  , , 1,...,i i

l l

i Nw w

h h

   
            
      

R x c x X  

 
The OBB solution uses the hybrid bounding box rotation 

identification method [29]. 

B. Combination of 3D Point Cloud Registration Target and 
OBB 

Equation (12) gives the spatial transformation 
P oin tN etLKT that 

can align P  and Q subject features obtained in the 

1 2

( ) 
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PointNetLK stage. Here, the source point cloud updated with 

P oin tN etLKT  is denoted 'Q : 

 

PointNetLK ' =Q T Q          (15) 

 

The OBBs of 'Q  and P  are denoted OBB 'Q  and OBBP
, 

respectively. To use the regularity of OBB to complete the 3D 

point cloud registration task, it is necessary to align OBB 'Q  and 

OBBP
. To align OBB 'Q  and OBBP

, ICP is used to align the 

vertices of OBB 'Q  and OBBP
. Here, let the vertices of OBB 'Q  

be 
3 8

OBB
'Q  , and the vertices of OBBP

 be 
3 8

OBB
P  . 

We consider general point cloud X . The vertices of O B B X
 

can be considered vertices of AABB ,X  in (10), which has 

undergone spatial rotation R; thus, the eight vertices of O B B X
 

are given as: 
 

( / 2)

1 (( 3) / 2)

(( 1) / 4)

( 1)

( 1) ,  1,...,8

( 1)

i

i

i

l

w i

h

 



   
  

      
      

R c       (16) 

 
where / is the divisor sign, i.e., the integer part of the quotient is 

taken, and the decimal part is erased. In addition, 
l

w

h

 
 
 
  

 is 

determined by the right-hand rule of the 3D Cartesian 
coordinate system. 

Through experiments, it was found that the registration task 
of 

O B B'Q  and 
OBBP  can be completed quickly and accurately 

using ICP because 
O B B'Q  and 

OBBP  only contain eight points, 

and their shapes are regular. The maximum point-to-point 
distance of the ICP should be set to one-half the length of the 
longest side of the OBB, which will improve the registration 
result. The space transformation matrix aligning 

O B B'Q  and 

OBBP  is denoted 
IC PT : 

 

O BB IC P O BB  'P T Q          (17) 

 
The OBB of the point cloud depicts the contour of the point 

cloud; thus, the spatial transformation applied to the eight 
vertices of the OBB can also be applied to each point in the 
point cloud. Based on (15), spatial transformation 

IC PT  is 

applied continually to source point cloud 'Q  at the end of the 

PointNetLK stage. Here, the updated 'Q  is denoted ' 'Q : 
 

ICP '' 'Q T Q           (18) 

 

When the initial relative deflection angles of P  and Q  are 

small, 
IC PT  can achieve fine registration of P  and Q . 

Determining whether P  and Q  complete fine registration 

must be assessed according to the fitting degree of P  and Q . 

When the initial relative deflection angles between P  and Q  

are large, the effect achieved is shown in Fig. 4. 
 

 

(a) Before aligning OBB       (b) After aligning OBB 

Fig. 4 OBB alignment process of guitar point cloud 
 

The OBB of source point cloud ' 'Q  updated by spatial 

transformation 
IC PT  is denoted OBB ''Q . As shown in Fig. 4 (a), 

the main features of the guitar point cloud have been aligned at 
the end of the PointNetLK registration stage; however, they are 
not sufficiently regular and are in a local optimal state in the 
non-convex optimization problem. Using a regular OBB that 
can describe the main features of the point cloud can help the 
point cloud registration algorithm avoid the local optimum and 
improve registration accuracy. 

As shown in Fig. 4 (b), after aligning OBB ''Q  and OBBP
, 

' 'Q  and P  are in mirror symmetry. Fig. 4 (b) shows the 

source point cloud ' 'Q  and target point cloud P  in a mirror 

symmetry state, and their symmetry plane passes through the 
center point of the OBB and is parallel to the side surface of the 
OBB. To restore the point cloud ' 'Q  and P  from the mirror 

state to the fully fitted state, ' 'Q  must be centered on the center 

3c   of the OBB, where the unit vector 
3

x

y

z

u

u

u

 
 

 
 
 

=u   

represents the OBB direction and is parallel to the long side of 
the OBB as the axis of rotation (rotating by π radians) This 
space transformation matrix is denoted 

m irro rT : 

 
 

m irror 2 1 0=  T T T T            (19) 

 

mirror= ''' ''Q T Q           (20) 

 
'''Q P             (21) 

 
where 

3 3 3 1
0

1 3

 -

   1
 



 
  
 

0 c
T

0
， 
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3 1
1

3 3

1 3

0   -    

exp    0   -   

   0

                                        1

z y

z x

y x

u u

u u

u u

 





    
    
              
 
 

0
T

0

， 

3 3 3 1
2

1 3

 

   1
 



 
  
 

0 c
T

0
. 

 
The approximately equal relationship in (189 is due to the 

presence of noise and sensor error. 
The final spatial transformation matrix required to complete 

the registration task can be obtained as: 
 

final m irror IC P PointN etLK  T T T T       (22) 

 
In the process of obtaining 

m irro rT , mirror symmetry planes 

between the template point cloud and source point cloud may 
have three situations in which the unit orthogonal vectors 

 3 3 3    ， ，u v w    representing the OBB direction are used 

as the normal plane. Therefore, there are three calculation 
results for 

m irro rT , from which the best T is selected such that P  

and 
m irror  ''T Q  have the highest degree of fitting.  

OBB can express the macroscopic feature of the 3D point 
cloud more regularly, as shown in Fig. 5, thereby providing 
global point cloud information for the 3D point cloud 
registration task. PointNetLK-OBB uses OBB to avoid local 
optima in the PointNetLK context, increase registration speed, 
and improve registration accuracy. 

 

 

Fig. 5 Orientation bounding box of car point cloud 

C. Training PointNetLK-OBB  

To ensure that PointNet can extract features from point cloud 
data, it is necessary to train the PointNet classification network. 
However, by training only PointNet, the features extracted by 
the network are not suitable for point cloud registration tasks. 
To ensure that PointNet can extract global features from the 
point cloud data that are suitable for the registration task and lay 
the foundation for subsequent high-accuracy registration, it is 
necessary to train PointNetLK based on training the PointNet 
classification network to fine-tune the PointNet network 
parameters. 

The algorithm after PointNetLK does not use the point cloud 
features extracted by the PointNet imaging functions  . 
Instead, it directly uses the point cloud itself to complete the 

final high-accuracy registration; therefore, when training the 
algorithm model, only the PointNetLK component is trained. 

The loss function used to train PointNetLK is the two-norm 
of the feature difference between the source point cloud Q  and 

the target point cloud P  extracted by the PointNet imaging 
function  , and the difference between the transformation 
matrix estimated by PointNetLK and the real transformation 
matrix F Norm is given as: 

 

  1

PointNetLK groundtruth 42 F
( ) ( )

     P Q T T I      (23) 

IV. EXPERIMENT 

A. Dataset 

ModelNet40 was used as the experimental dataset [30]. 
ModelNet40 is an open dataset containing a total of 40 
categories of CAD models, and each category comprises 
training data and test data. PointNetLK uses ModelNet40 to test 
and analyze algorithm performance; thus, we employed this 
dataset to facilitate comparison with PointNetLK. 

B. Registration Error under Different Initial Deflection 
Angles 

Initial 

 

(a) Guitar         (b) Person 
PointNetLK 

 

(a) Guitar         (b) Person 
PointNetLK-OBB 

 

(a) Guitar         (b) Person 

Fig. 6 Comparison of registration results between PointNetLK and 
PointNetLK-OBB 

 
To verify the effectiveness of PointNetLK-OBB, which is 

improved PointNetLK by combining the oriented bounding 
box, the proposed was compared to the PointNetLK algorithm 
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on the Modelnet40 dataset, and the intuitive comparison effect 
is shown in Fig. 6. The results demonstrate that the improved 
PointNetLK combined with the oriented bounding box can 
effectively reduce registration error when the deflection angle 
of the point clouds to be registered is large. 

We used PointNetLK and PointNetLK-OBB to experiment 
on the ModelNet40 test set. Here, to observe the registration 
performance of the algorithm in different initial states, the 
initial deflection angles of the source point cloud and template 
point cloud used in the experiment were spaced at 10  intervals 
from 0   to 180  uniformly distributed, and the displacement 
was selected randomly in the range [0,  0.3] . The product 

1
error final groundtruth= )(T T T  of the estimated transformation matrix 

finalT  and inverse of the real transformation matrix 1
groundtruth )(T  

was used as the algorithm evaluation criterion. To verify the 
overall performance of the algorithm on the dataset, we used 
the mean error of all test data under the same deflection angle to 
represent the final performance of the algorithm. 

The first set of observation data was the mean position error 
of the algorithm. Here, we used the norm of t  in 

errorT  (2) to 

represent the position error, and the final position error was 
averaged from the position errors of all test data under the same 
deflection angle. The final position error under different 
deflection angles is shown in Fig. 7. 

 

 

Fig. 7 Mean position error of PointNetLK-OBB and PointNetLK with 
different initial deflection angles 

 
As shown in Fig. 7, the initial deviation angle between the 

point clouds to be registered increased, the mean position error 
of PointNetLK continued to increase, and PointNetLK-OBB 
always maintained a low error level. 

The second set of observation data was the mean angle error 
of the algorithm. Here, we used 

error  rather than 
errorT  (3), and 

the first three components 
1 2 3, ,    of 

error  represented the 

rotation angle error, and the final angle error was averaged from 
the rotation angle errors of all test data under the same 
deflection angle. The final angle error at different deflection 
angles is shown in Fig. 8. 

As shown in Fig. 8, the initial deflection angle between the 
point clouds to be registered increased, the mean rotation angle 

error of PointNetLK increased gradually, and PointNetLK- 
OBB always maintained a low error level. Due to the 
accumulation of errors, the angle error of PointNetLK-OBB 
increased when the initial deflection angle between the point 
clouds to be registered was 180 . However, this error was still 
at a low level. 

 

 

Fig. 8 Average rotation angle error of PointNetLK-OBB and 
PointNetLK with different initial deflection angles 

 
PointNetLK uses the fully-connected PointNet network to 

extract only the point cloud macro contour features; thus, when 
the initial deflection angle of the point cloud to be registered is 
large, there is at least one point cloud feature in the non-target 
pose that is the same as the target pose feature, resulting in LK. 
When the algorithm is in the non-target state, it stops updating 
the rotation parameters (10), and the registration algorithm falls 
into a new local optimum (Fig. 3). Therefore, the greater the 
deflection angle of the point cloud, the more non-target poses 
with the same feature as the target pose point cloud, which 
results in greater PointNetLK registration error. 

With PointNetLK-OBB, the non-convex problem of the 
traditional registration algorithm is eliminated, the main 
component in the point cloud is aligned, and the regularity of 
the OBB is used to align the OBB using the ICP algorithm. The 
frame uses the mirror symmetry effect to flip the point cloud, 
thereby avoiding the new local optimization problem caused by 
PointNet and (10) and effectively reducing registration error 
when the point cloud deflection angle is too large. 

C. Registration Time Performance under Different Initial 
Deflection Angles 

To test the time performance of the PointNetLK-OBB 
algorithm, we compared it to the original PointNetLK 
algorithm on an Intel Xeon 2.1 GHz CPU. The results 
demonstrate that the run time of the proposed algorithm is 
increased slightly compared to the original algorithm. 

We used PointNetLK and PointNetLK-OBB to experiment 
on the ModelNet40 test set. The deflection angles of the source 
point cloud and template point cloud in this experiment ranged 
from 0   to 180  in 10  intervals uniformly distributed, and the 
displacement was selected randomly in the range [0,  0.3] . To 

test the overall time performance of the algorithm on this 
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dataset, we used the average run time of all test data under the 
same deflection angle to represent the final algorithm time 
performance, as shown in Fig. 9. 

 

 

Fig. 9 Average run time of PointNetLK-OBB and PointNetLK with 
different initial deflection angles 

 
As shown in Fig. 9, the run time of PointNetLK-OBB and 

PointNetLK increased as the initial deflection angle increased. 
The run time of PointNetLK-OBB was twice that of 
PointNetLK. Although the run time of PointNetLK-OBB 
increased relative to PointNetLK, by comparing Figs. 8 and 9, 
we find that the run time of PointNetLK-OBB is acceptable 
relative to completing the registration task at high accuracy. 

To ensure sufficient registration accuracy, PointNetLK-OBB 
uses the regularity of OBB to complete the registration based 
on PointNetLK, which increases time costs. PointNetLK-OBB 
uses ICP to align the eight vertices of the OBB and creates a 
mirror symmetry effect between the point clouds to be 
registered. The point cloud to be registered in the mirror 
symmetry state only needs to rely on the rotation of the point 
cloud itself to complete high-accuracy point cloud registration. 
Here, while improving accuracy, the time cost has not increased 
significantly. 

V. CONCLUSION 

To address the problem where PointNetLK falls into local 
optimum and loses accuracy when the deviation angle of the 
point cloud to be registered is too large, this paper has proposed 
the PointNetLK-OBB point cloud registration method, which is 
improved by combining the OBB. The proposed method uses 
PointNetLK to escape the non-convex problem of traditional 
point cloud registration, completes the alignment of the 
principal components of the point cloud, uses the regularity of 
the 3D point cloud OBB, and, under guidance of ICP, and 
produces mirror symmetry between the point clouds. In 
conjunction with the rotation of the source point cloud itself, 
the effect avoids the local optimization problem caused by 
PointNet lacking a convolution structure. 

The improved registration PointNetLK-OBB algorithm was 
compared to the original algorithm PointNetLK on the public 
3D ModelNet40 dataset. The experimental results demonstrate 

that PointNetLK-OBB can avoid the local optimum in the 
context of PointNetLK when the deviation angle of the point 
cloud to be registered is large, which ensures time efficiency, 
and completes the 3D point cloud registration at high accuracy. 

Some readers may argue that PointNetLK can be replaced 
with OBB and ICP, which can produce a mirror symmetry 
effect. We consider that the point cloud registration cannot be 
completed using only the OBB and ICP. The method of the 
OBB series requires the support of ICP; however, ICP is highly 
dependent on the initial position of the point clouds to be 
registered, and it is easy to fall into the traditional non-convex 
problem. The proposed method solves this problem well. Here, 
it uses PointNetLK to break out of the traditional non-convex 
problem and uses the regularity of the direction bounding box 
to avoid the local optimization problem in the context of 
PointNetLK. However, we found that PointNetLK-OBB can 
only register point clouds of the same scale. Thus, future 
improvements can include expanding the OBB to complete the 
point cloud registration with inconsistent scales. 

The proposed algorithm can currently be applied to AR 
medical care, and, in future, can also be extended to other 
applications, e.g., robot path planning, autonomous driving, 
and 3D reconstruction. 
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