
 

 

 
Abstract—In this article, we study demiclosed and strongly quasi-

nonexpansive of a sequence generated by the proximal point algorithm 
for a finite family of quasi-nonexpansive mappings in Hadamard 
spaces. △-convergence of iterations for the sequence of strongly quasi-
nonexpansive mappings as well as the strong convergence of the 
Halpern type regularization of them to a common fixed point of 
sequence are also established. Our results generalize and improve 
several previously known results of the existing literature. 
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I. INTRODUCTION 

 complete metric space is a Hadamard space if is 
geodesically connected, and if every geodesic triangle in it 

is at least as thin as its comparison triangle in the Euclidean 
plane. The precise definition of the Hadamard spaces is given 
in Section II. Some examples of the Hadamard spaces are pre-
Hilbert spaces, Hadamard manifolds, ℝ-trees and many others. 
It is natural that a large number of notions known in these 
spaces can be extended to Hadamard spaces. Moreover, the 
extension of some theories, such as monotone operator theory, 
fixed point theory and many others, from such spaces to 
Hadamard spaces is useful and valuable. 

The proximal point algorithm is one of the most effective 
iterative methods for approximating the solution of a variational 
inequality associated with a maximal monotone operator, or 
finding a zero of a maximal monotone operator. This algorithm 
was first introduced by Martinet [15] for minimizing a convex 
function on ℝ , and then systematically applied by Rockafellar 
[17] for maximal monotone operators. Rockafellar [17] proved 
the weak convergence of the generated sequence to a zero of 
the maximal monotone operator, with appropriate assumptions 
on the parameters and errors. As an advantage of this method, 
it is extendable to nonlinear spaces, like Riemannian manifolds 
and metric spaces of nonpositive curvature. Ferreira and 
Oliveira [11], Li et al. [14], and Ahmadi and Khatibzadeh [1] 
studied the proximal point algorithm in Hadamard manifolds. 
Bacak [3] studied the proximal point method in nonpositive 
curvature metric spaces. He proved △ convergence of the 
generated sequence of the algorithm to a minimum point of the 
convex function. The proximal point algorithm also has been 
used for minimization of a quasi-convex function in Hadamard 
manifolds in [7], [16], [18], [19].  

Some authors considered the asymptotic behavior of the 
product of resolvents of convex functions or more generally, 
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maximal monotone operators, that the generated sequence 
converges weakly to an element of the intersection of zeros of 
a finite family of maximal monotone operators in Hilbert 
spaces. This iterative scheme is called the method of alternating 
(cyclic) resolvents, which was studied by Boikanyo and 
Morosanu [8] and Bauschke et al. [6] for two maximal 
monotone operators in Hilbert spaces. In the special case, when 
the monotone operators are the normal cone of convex and 
closed sets, this method is reduced to alternating projection 
method studied by von Numann in Hilbert spaces and extended 
by Bacak et al. [4] in Hadamard spaces. 

In [13], the weak convergence of an iteration of a sequence 
of strongly quasi-nonexpansive mappings as well as the strong 
convergence of its Halpern regularization in 𝐶𝐴𝑇 0  spaces 
were studied. The authors in [13] showed that some iterative 
methods like Mann and Ishikawa iterations for quasi 
nonexpansive mappings as well as proximal point algorithms 
for quasi-convex and pseudo-convex function can be extracted 
from the asymptotic behavior of iterations of strongly quasi-
nonexpansive sequences. In this paper, we apply the tools of 
[13] for studying the asymptotic behavior of the product of 
resolvents of quasi-nonexpansive mappings which extend the 
results in the literature of alternating (cyclic) resolvent methods.  

In the next section, we recall some preliminaries and tools 
which are needed in the paper.  

II.  PRELIMINARIES OF HADAMARD SPACES 

Let 𝑋, 𝑑  be a metric space. For 𝑥, 𝑦 ∈ 𝑋 a mapping 
𝜃: 0, 𝑙 → 𝑋, where 𝑙 0, is called a geodesic with endpoints 
𝑥, 𝑦, if 𝜃 0 𝑥, 𝜃 𝑙 𝑦, and 𝑑 𝜃 𝑡 , 𝜃 𝑡 |𝑡 𝑡 | for 
all 𝑡, 𝑡′ ∈ 0, 𝑙 . If, for every 𝑥, 𝑦 ∈ 𝑋, a geodesic with endpoints 
𝑥, 𝑦 exists, then we call 𝑋, 𝑑) a geodesic metric space and it is 
said to be unique geodesic if between any two points there is 
exactly one geodesic. 

A subset 𝐸 of a uniquely geodesic space 𝑋 is said to be 
convex when for any two points 𝑥, 𝑦 ∈ 𝐸, the geodesic joining 
𝑥 and 𝑦 is contained in 𝐸. The image of 𝜃 is called a geodesic 
segment which is denoted by 𝑥, 𝑦  for unique geodesic spaces.  
Let 𝑋 be a unique geodesic metric space. For each 𝑥, 𝑦 ∈  𝑋 
and for each 𝜆 ∈ 0,1 , the unique point 𝑚 ∈ 𝑥, 𝑦  such that: 

 
𝑑 𝑥, 𝑚 𝜆𝑑 𝑥, 𝑦 ,         (1) 

 
and, 

𝑑 𝑦, 𝑚 1 𝜆 𝑑 𝑥, 𝑦 .         (2) 
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We will use the notation 1 𝜆 𝑥⨁𝜆𝑦 for the unique point 
𝑚  satisfying in the above statement (see Lemma 2.3 in [2]). 

A geodesic triangle △∶ △ 𝑥 , 𝑥 , 𝑥  in a geodesic metric 
space 𝑋, 𝑑  consists of three points 𝑥 , 𝑥 , 𝑥 ∈ 𝑋 as vertices 
and three geodesic segments joining each pair of vertices as 
edges. A comparison triangle for the geodesic triangle △ is the 
triangle △∶ △ 𝑥 , 𝑥 , 𝑥 ≔△ 𝑥 , 𝑥 , 𝑥  in the Euclidean 
space ℝ  such that 𝑑 𝑥 , 𝑥 𝑑ℝ �̅� , �̅�  for all 𝑖, 𝑗 1,2,3. 
Let △ be a geodesic triangle in 𝑋 and let △ be a comparison 
triangle for △. Then △ is said to satisfy the 𝐶𝐴𝑇 0  inequality 
if for all 𝑥, 𝑦 ∈ △ and all comparison points 𝑥, 𝑦 ∈ △, 
 

𝑑 𝑥, 𝑦 𝑑ℝ �̅�, 𝑦 .           (3) 
 

Let 𝑥, 𝑦, and 𝑧 be points in 𝑋 and 𝑦  be the midpoint of the 
segment 𝑦, 𝑧 ; then, the 𝐶𝐴𝑇 0  inequality implies: 
 

𝑑 𝑥, 𝑦 𝑑 𝑥, 𝑦 𝑑 𝑥. 𝑧 𝑑 𝑦, 𝑧 .     (4) 

 
Inequality (4) is known as the CN-inequality of Bruhat and 

Titis [9]. 
Definition1.  A geodesic metric space is said to be a 𝐶𝐴𝑇 0  
space if all geodesic triangles satisfy the 𝐶𝐴𝑇 0  inequality. 
Equivalently, 𝑋 is called a 𝐶𝐴𝑇 0  space if and only if it 
satisfies the CN-inequality. 

𝐶𝐴𝑇 0  spaces are examples of uniquely geodesic spaces, 
and a complete 𝐶𝐴𝑇 0  space is called a Hadamard space.  

Now we define the notion of △ convergence in 𝐶𝐴𝑇 0  
spaces as an alternative concept for weak convergence in these 
settings, which is weaker than the metric convergence (strong 
convergence). In a Hadamard space 𝑋, for a bounded sequence 
𝑥  and 𝑥 ∈ 𝑋, we set: 

 
𝑟 𝑥, 𝑥 ≔  lim

→
sup 𝑑 𝑥, 𝑥 .         (5) 

 
The asymptotic radius of 𝑥  is defined as follows: 

 
𝑟 𝑥 ≔ inf 𝑟 𝑥, 𝑥 : 𝑥 ∈ 𝑋 ,       (6) 

 
and the asymptotic center is the set: 
 

𝐴 𝑥 ≔ 𝑥 ∈ 𝑋: 𝑟 𝑥, 𝑥  𝑟 𝑥 .       (7) 
 

It is known that in a Hadamard space, 𝐴 𝑥  is singleton 
[10]. 
Definition1. A sequence 𝑥  is said to be △ convergence (or 
weak convergent) to 𝑥 if 𝑥 is the unique asymptotic center of 
every subsequence 𝑥  of 𝑥 . The point 𝑥 is called △ 𝑙𝑖𝑚 

(or weak limit) of 𝑥 . We denote △ convergence or weak 
convergence of 𝑥   to 𝑥 by 𝑥 ⇀ 𝑥. 
Lemma1. [12, Proposition 3.6] Let 𝑋 be a Hadamard space. 
Then, every bounded, closed and convex subset of 𝑋 is △-
compact; that is, every bounded sequence in it, has a △-
convergent subsequence. 

Let 𝐶 be a nonempty subset of a Hadamard space 𝑋, 𝑑 . A 
mapping 𝑇 ∶ 𝐶 →  𝑋 is called nonexpansive if for each 𝑥, 𝑦 ∈

 𝐶, 𝑑 𝑇 𝑥, 𝑇 𝑦   𝑑 𝑥, 𝑦 , and if 𝑋  𝐶, then 𝑇 is 
nonexpansive self-mapping. A point 𝑥 ∈  𝐶 is called a fixed 
point of 𝑇 if 𝑇 𝑥  𝑥. We write: 
 

𝐹 𝑇 :  𝑥 ∈  𝐶 ∶  𝑇 𝑥  𝑥 .        (8) 
 

The set of fixed points of a nonexpansive self-mapping on a 
closed convex subset of a 𝐶𝐴𝑇 0  space is closed and convex. 
It is well known that a nonexpansive self-mapping on a 
nonempty, closed, convex and bounded subset of a 𝐶𝐴𝑇 0  
space has a fixed point. 
Definition3. A mapping 𝑇 ∶  𝐶 →  𝐶 is called quasi-
nonexpansive iff 𝐹 𝑇   ∅ and 𝑑 𝑇 𝑥, 𝑝   𝑑 𝑥, 𝑝 , ∀𝑥 ∈
 𝐶 and ∀𝑝 ∈  𝐹 𝑇 . 

We recall next the definition of firmly quasi-nonexpansive 
mappings. 
Definition44. A mapping 𝑇 ∶ 𝐶 → 𝐶 is called firmly quasi-
nonexpansive if 𝐹 𝑇 ∅ and,  
 

𝑑 𝑇𝑥, 𝑝 𝑑 𝑥, 𝑝 𝑑 𝑥, 𝑇𝑥 , ∀ 𝑥, 𝑝 ∈ 𝐶 𝐹 𝑇 .   (9) 
 

Obviously, firmly quasi-nonexpansive ⇒ quasi-
nonexpansive. 
Definition5. A sequence 𝑇  of quasi-nonexpansive mappings 
is said to be strongly quasi-nonexpansive iff ∩ 𝐹 𝑇 ∅ and 
𝑑 𝑥 , 𝑇 𝑥 → 0, whenever 𝑥  is a bounded sequence in C 
and 𝑑 𝑥 , 𝑞 𝑑 𝑇 𝑥 , 𝑞 → 0, for some 𝑞 ∈∩ 𝐹 𝑇 . 
When 𝑇 ≡ 𝑇, 𝑇 is called a strongly quasi-nonexpansive 
mapping. 
Definition6. A sequence 𝑇 : 𝐶 → 𝐶 of quasi-nonexpansive 
mappings with ∩ 𝐹 𝑇 ∅ is called demiclosed iff for each 
subsequence 𝑥  of the sequence 𝑥 ⊂ 𝐶 such that 𝑥 ⇀ 𝑝 ∈

𝐶 and 𝑑 𝑥 , 𝑇 𝑥 ⟶ 0, we have 𝑝 ∈∩ 𝐹 𝑇 .  

It is easy to see that whenever 𝑇 ≡ 𝑇 then definition 6 is 
exactly the definition of the demiclosedness of T. 

In [13, Theorem 2.3 and Corollary 2.4] the authors proved 
weak convergence of the sequence 𝑥 𝑇 𝑥 , where 𝑇  is 
a demiclosed and strongly quasi-nonexpansive sequence with 
∩ 𝐹 𝑇 ∅. We recall the results here for convenience of the 
author. 
Theorem1. [13, Theorem 2.3 and Corollary 2.4] Suppose that 
𝑇 : 𝑋 → 𝑋 is a sequence of strongly quasi-nonexpansive and 
demiclosed mappings and 𝑥 ∈ 𝑋. We define 𝑥 𝑇 𝑥 . 
Then the sequence 𝑥  converges weakly to an element of 
∩ 𝐹 𝑇 . 

III. RESOLVENT OF NONEXPANSIVE MAPPINGS 

The resolvent operator 𝐽  for a nonexpansive mapping 𝑇 has 
been defined in the literature for Hadamard spaces (see [5]). 
The definition for a Lipschitz mapping is similar, but it exists 
only for some parameters 𝜆. 

Let 𝐶 ⊂ 𝑋 be nonempty, closed and convex. Suppose that 𝑇 ∶
𝐶 → 𝐶 is 𝐿 -Lipschitz with 𝐿 1 such that 𝑑 𝑇𝑥, 𝑇𝑦
𝛼𝑑 𝑥, 𝑦 . For 𝜆 0 and 𝑥 ∈ 𝐶, we define 𝑇 ∶ 𝐶 → 𝐶 as:  
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𝑇  𝑦  𝑥⨁ 𝑇𝑦.             (10) 

 
In the sequel, let 𝑦 , 𝑦 ∈ 𝐶, then we have: 

 

𝑑 𝑇 𝑦 , 𝑇 𝑦 𝑑 𝑥⨁ 𝑇𝑦 , 𝑥⨁ 𝑇   (11) 

 

          𝑑 𝑇𝑦 , 𝑇𝑦 𝑑 𝑦 , 𝑦 .       (12) 

 

Now if 1, then 𝑇  is a contraction, i.e. if 𝜆  then 

𝑇  has a unique fixed point which we denote it by 𝐽 𝑥 and and 
it is called the resolvent of 𝑇 of order 𝜆 0 at 𝑥. In fact, 𝐽
𝐹 𝑇 . If 𝐽 𝑥, then we have:  
 

𝑥 𝑥⨁ 𝑇𝑥 ⟹ 𝑇𝑥 𝑥.      (13) 

 

Now, let 𝑇𝑥 𝑥, then we get 𝑥 𝑥⨁ 𝑇𝑥, i.e. 𝐽  

which implies that 𝐹 𝐽 𝐹 𝑇 . 
Let 𝑇 ∶ 𝐶 → 𝐶 be a 𝐿-Lipschitz and quasi-nonexpansive 

mapping, where 𝐶 is nonempty, closed and convex and 

𝜆 , we define the sequence 𝑥  as: 

 

𝑥 𝐽 𝑥 𝑥 ⨁ 𝑇𝐽 𝑥 .     (14) 

IV. MAIN RESULTS 

In this section, we study △-convergence of iterations for a 
sequence of strongly quasi-nonexpansive mappings as well as 
the strong convergence of the Halpern type regularization of 
them. 
Lemma2. Suppose 𝑋 be a Hadamard space and 𝑇 ∶ 𝑋 → 𝑋, 𝑖
1,2, … , 𝑁 be 𝐿-Lipschitz with 𝐿 1, and quasi-nonexpansive 

mappings with ∩ 𝐹 𝑇 ∅. If 𝜆  and  

 𝑙𝑖𝑚𝑖𝑛𝑓𝜆 𝜆 0, then 𝐽 … 𝐽  is strongly quasi-

nonexpansive sequence. 
Lemma3. Suppose 𝑋 be a Hadamard space and 𝑇 ∶ 𝑋 → 𝑋, 𝑖
1,2, … , 𝑁 be 𝐿-Lipschitz with 𝐿 1, demiclosed and quasi- 
nonexpansive mappings. If ∩ 𝐹 𝑇 ∅ and 𝜆  is a 
positive sequence such that 𝑙𝑖𝑚𝑖𝑛𝑓𝜆 𝜆 0 and 𝜆

 then 𝐽 … 𝐽  is demiclosed. 

Theorem2. Let 𝑋 be a Hadamard space and 𝑇 ∶ 𝑋 → 𝑋, for 𝑖
1,2, … , 𝑁 be 𝐿-Lipschitz and quasi-nonexpansive mappings 

with ∩ 𝐹 𝑇 ∅. If 𝑙𝑖𝑚𝑖𝑛𝑓𝜆 𝜆 0 and 𝜆 , then 

the sequence generated by: 
 

𝑥 𝐽 … 𝐽 𝑥 ,             (15) 
 
converges weakly to an element of ∩ 𝐹 𝑇 . 
Theorem3. Let 𝑋 be a Hadamard space and 𝑇 ∶ 𝑋 → 𝑋, for 𝑖
1,2, … , 𝑁 be 𝐿-Lipschitz and quasi-nonexpansive mappings 

with ∩ 𝐹 𝑇 ∅. If 𝜆  and 𝑙𝑖𝑚𝑖𝑛𝑓𝜆 𝜆 0, 𝛼  

satisfies the conditions: 

1.  0 𝛼 1, 
2.  𝛼 → 0 𝑎𝑠 𝑘 → ∞, 
3.  ∑ 𝛼 ∞, 
and 𝑢 is an arbitrary element of 𝑋, then the sequence generated 
by: 
 

𝑥 𝛼 𝑢⨁ 1 𝛼 𝐽 … 𝐽 𝑥 ,          (16) 
 

converges strongly to an element of ∩ 𝐹 𝑇 , which is the 
nearest point to u. 

V.   CONCLUSION 

In this paper, we apply the same tools of [13] for studying the 
asymptotic behavior of the product of resolvents of quasi-
nonexpansive mappings s in Hadamard spaces. The results are 
new even in Hilbert spaces and extend the results in the 
literature of alternating (cyclic) resolvent methods. Even for 
one quasi-nonexpansive mapping, the results extend the results 
of subsection 3.2 of [13]. 
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