
 

 

 
Abstract—An application of Beta wavelet networks to 

synthesize pass-high and pass-low wavelet filters is investigated in 
this work. A Beta wavelet network is constructed using a parametric 
function called Beta function in order to resolve some nonlinear 
approximation problem. We combine the filter design theory with 
wavelet network approximation to synthesize perfect filter 
reconstruction. The order filter is given by the number of neurons in 
the hidden layer of the neural network. In this paper we use only the 
first derivative of Beta function to illustrate the proposed design 
procedures and exhibit its performance. 
 

Keywords—Beta wavelets, Wavenet, multiresolution analysis, 
perfect filter reconstruction, salient point detect, repeatability.  

I. INTRODUCTION 
ECENTLY, the subject of wavelet analysis has attracted 
much attention from both mathematicians and engineers 

alike. Wavelets have been applied successfully to multiscale 
analysis and synthesis, time-frequency signal analysis in 
signal processing, function approximation, approximation in 
solving partial differential equations. Wavelets are well suited 
to depicting functions with local nonlinearities and fast 
variations because of their intrinsic properties of finite support 
and self-similarity.  

The relationship between the scaling function and the 
wavelet function is now clear. The scaling function provides a 
set of basis function to approximate a signal at a certain 
resolution and the wavelet provides a set of basis functions for 
the detail signal. When the detail signal is added to the signal 
approximation, the result is the signal approximation at the 
next higher level of resolution. For a general continuous time 
signal f(t), these successive additions of detail signals to create 
the next higher resolution approximation must continue 
forever to get an accurate representation of f(t). This problem 
is neatly fixed when dealing with discrete time signals as they 
are already defined with finite time resolution and can be 
accurately represented in some subspace Vk  where k < +∝. 

In this paper, we propose a novel method to generate 
wavelet filters using Beta Wavelet Neural Network (BWNN).  
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The advantage of the proposed method is demonstrated by 
computer simulations. This paper is organized as follows. 
Section 2 presents the theory of Beta wavelet. Section 3 shows 
the discrete wavelet transform, MRA and filter 
implementation. Section 4 illustrates the reason why a WNN 
is needed to synthesis wavelet filters. Section 5 demonstrates 
the simulation results on Beta wavelet filters and some others. 
Section 6 concludes this paper. 

II. A NOVOL BETA WAVELET FAMILY 
The Beta function [1, 2] is defined as: 
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We have proved in [1, 2] that all derivatives of Beta 
function ∈ L²(IR) and are of class C∞, so they have the 
property of universal approximation. The general form of the 
nth derivative of Beta function is: 
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III.  DISCRETE WAVELET TRANSFORM, MRA AND FILTER 
IMPLEMENTATION 

The DWT will transform a discrete time signal to a discrete 
wavelet representation [3]. The first step is to discretize the 
wavelet parameters. This is commonly done with the dyadic 
sampling grid, defined by: 

 

( ) Znmntt mmnm ∈−Ψ=Ψ ,,22)( 2/,  
(4) 

This reduces the previously continuous set to a now 
discrete, orthogonal set. The analysis formula becomes 

ZnmttfW nmnm ∈Ψ= ,,)(),( ,,  
(5) 
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With the reconstruction formula 

∑∑ Ψ=
m n

nmnm tWtf )()( ,,

 
(6) 

Next, consider fixing the scale factor m, so that we have 
ψ(t) Since the mother wavelet has compact frequency support, 
this wavelet set represents a discrete set of temporally 
translated wavelets with fixed frequency localization. As the 
inner product operation can also be interpreted as a filtering 
operation, the projection onto this set of wavelets can be 
considered a set of temporally translated band-pass filters of 
fixed frequency response. If the scale factor m is reinserted, 
the discrete wavelet series wm,n can now be considered the 
result of applying a set of temporally and spectrally translated 
band-pass filters. 

This tells us that the scaling function at one resolution level 
can always be expressed as a linear combination of the 
translated scaling functions at higher resolutions. Thus, we 
can write: 

∑ −Φ=Φ
k

k ktht )2(2)(
 

(7) 

This is known as the multiresolution analysis (MRA) 
equation.  

Because of the ease with which digital filters can be 
implemented, most wavelet decomposition and synthesis 
schemes are designed by creating the equivalent filters as 
opposed to the wavelet and scaling functions themselves. This 
usually begins by resigning the low-pass filter, which then 
predetermines the matching high-pass filter. Of course, there 
are specific restrictions (omitted here) placed on the filters so 
that they do indeed correspond to a wavelet transform. Since 
the entire signal information is captured when both filters are 
applied at a specific resolution level. They correspond to a 
perfect reconstruction mirror filter bank shown in Fig. 1. 

 
Fig. 1 Perfect Reconstruction Filter Bank 

H and G correspond to the low and high-pass filters 
respectively. The down-sampling procedure is possible due to 
the perfect, non-redundant two-channel decomposition. The 
reconstruction filters H’ and G’ are, in most instances, just the 
filters H and G reversed. 

IV.  WAVELET NEURAL NETWORK (WNN) 
Given an n-element training set, the overall response of a 

WNN is:  
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Where Np is the number of wavelet nodes in the hidden 
layer and wi is the synaptic weight of WNN. A WNN can be 
regarded as a function approximator which estimates an 
unknown functional mapping: 

y = f(x) +ε  (9)

Where f is the regression function and the error term ε is a 
zero-mean random variable of disturbance. There are a 
number of approaches for WNN construction [4-5], we pay 
special attention on the model proposed by Zhang [6].  

If we choose ( ) ( )y x x= Φ  the output of the network is: 
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The pass low filter is given by: 
( ) 2 (2 )k

k
x g x kΨ = Φ −∑  (11) 

We demonstrate that: 

1 ( )
i i

x x
a a

⎛ ⎞
Φ = Φ⎜ ⎟
⎝ ⎠

 (12) 

From (10) and (7) and for a choice of 1
2ia =  we deduce 

that i ih w=   
We can calculate the pass-high coefficients filter using a 

wavelet neural network, the size of the filter is given by the 
number of wavelet used in the hidden layer of the network. 

V. COFFECIENTS FILTERS AND SIMULATION RESULT 
The originality of this work is to calculate the Beta 

coefficients filters using an iterative method based on Beta 
wavelet neural network. The output function of a wavelet 
neural network is given by the equation (10), the perfect 
reconstruction filters should satisfies the equation (12) which 
can be seen as a wavelet neural network with three hidden 
layer. In this work we calculate the pass-high and pass-low 
filters of Beta wavelet for different length. 
 

A.  Associate Filters for Beta Wavelet 
We construct a Beta wavelet neural network, the transfer 

function of the neurons is the first derivative of Beta function 
(BW 1). 

For ∀ (p, q) ∈ ℜ², if the number of neuron Np in hidden 
layer is equal to 2, the pass-high and pass-low filters are the 
same as Haar coefficients filters. 
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VI.  APPLICATION: SALIENT POINT DETECTION 

A.   Results for Repeatability 
In this section we will compare the performance of Beta 

wavelets in the case of wavelet-based salient point detect. We 
briefly present the outline of the algorithm and we show some 
examples of detected salient points. 

Before we can measure the repeatability of a particular 
detector we first had to consider typical image alterations such 

as image rotation and image scaling. In both cases, for each 
image we extracted the salient points and then we computed 
the average repeatability rate over the database for each 
detector. In the case of image rotation, the rotation angle 
varied between 0° and 180°. The repeatability rate in a ε=1 
neighborhood for the rotation sequence is displayed in Fig. 2. 

The detectors using Beta wavelet transform, applied on 
cameraman image, give better results compared with the other 
ones (Haar and Daubechies 4). Note that the results for all 
detectors are not very dependent on image rotation. The best 
results are provided by Daubechies 4 detector. 

 

 
 Fig. 2 Repeatability rate for image rotation 1=ε  

 
In the case of scale changes, for each image we considered 

a sequence of images obtained from the original image by 

reducing the image size so that the image was aspect-ratio 
preserved. 

The repeatability rate for scale changes [10-12], applied on 
cameraman image, is presented in Fig. 3. All detectors are 
very sensitive to scale changes. The repeatability is low for a 
scale factor above 3 especially for Haar detectors. The 
detectors based on Beta 1-6 wavelet transform provide better 
results compared with the other ones. 

 
Fig. 3 Repeatability rate for image scale change 1=ε  

B. Results for Information Content 
In the specifications of our point detector, points shouldn’t 

gather in small regions. The aim is that the extracted points 
represent different parts and patterns of the image. We 
introduce the entropy to evaluate how much the extracted 
points are spread in the image. Of course this criterion doesn’t 
assure the set of points is relevant for indexing, but we believe 
it is necessary to describe different parts of the image [7-10]. 

The idea is to compare the entropy of different sets of 
points extracted with different detectors. The points shouldn’t 
necessarily be a uniform repartition in the image. If there is 
"nothing" in some parts of the image, there shouldn’t be points 
in these parts. But still some detectors will lead to points more 
spread than others. 

We define a grid on the image. The probability pi of the 
point distribution in the cell i is: number of extracted points in 
this cell / total number of extracted points. The entropy of the 
extracted point distribution of an image I for a detector d is: 

 

∑
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With NC the number of cells. 

  (13) 

The mean repeatability rate for image rotation (a) and scale 
change (b) is summarized in Fig. 4. 

 
TABLE I 

BETA WAVELET FILTERS 
Filter order Pass-low filter h Pass-high filter g 

 0.50000000000000  0.50000000000000 2  0.50000000000000 -0.50000000000000 
 0.49523195168333 -0.01123780429743 
 0.51546157224974 -0.00054428036434 
 0.00054428036434  0.51546157224974 4 

-0.01123780429743 -0.49523195168333 
 0.49523195168333 -0.01123780429743 
 0.62758229715635  0.12627540899907 
 0.62758229715635 -0.12627540899907 
-0.00130688815728  0.00130688815728 
-0.00130688815728 -0.00130688815728 
-0.12627540899907 -0.62758229715635 

 
6 

-0.12627540899907  0.62758229715635 
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(a) 

 
(b) 

Fig. 4 The mean repeatability rate for image rotation and scale 
change 

 
In summary, the most "interesting" salient points were 

detected using the Beta 1-6 detector. These points have the 
highest information content and proved to be the most robust 
to rotation and scale changes. 

VII. CONCLUSION 
We review the filter-bank implementation of the discrete 

wavelet transform (DWT) and show how it may be 
synthesized using Beta wavelet network for processing images 
and other multi-dimensional signals. We show then that the 
condition for inversion of the DWT (perfect reconstruction) 
forces severe shift dependence on gain ratio. In this work we 
calculate the pass-law and pass-high filter for the first 
derivative of Beta wavelet. These filters can be optimized if 
we adjust the support of the wavelet, the order of derivation 
and the p and q parameters. 

In conclusion, the novel contribution of this paper is in 
showing that the Beta wavelet-based salient points technique 
are able to capture the local feature information and therefore, 
they provide a better characterization for the scene content 
than Haar or Daubechies wavelets since they are more 
distinctive and invariant. 
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