Search results for: Finite Difference (FD) Analysis
10183 Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
Authors: Kelong Zheng, Jinsong Hu,
Abstract:
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable.
Keywords: Generalized Rosenau-Burgers equation, difference scheme, stability, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187410182 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.
Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169110181 Effect of Columns Stiffness's and Number of Floors on the Accuracy of the Tributary Area Method
Authors: Anas M. Fares
Abstract:
The using of finite element programs in analyzing and designing buildings are becoming very popular, but there are many engineers still using the tributary area method (TAM) in designing the structural members such as columns. This study is an attempt to investigate the accuracy of the TAM results with different load condition (gravity and lateral load), different floors numbers, and different columns stiffness's. To conduct this study, linear elastic analysis in ETABS program is used. The results from finite element method are compared to those obtained from TAM. According to the analysis of the data obtained, it can be seen that there is significance difference between the real load carried by columns and the load which is calculated by using the TAM. Thus, using 3-D models are the best choice to calculate the real load effected on columns and design these columns according to this load.Keywords: Tributary area method, finite element method, ETABS, lateral load, axial loads, reinforced concrete, stiffness, multi-floor buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113110180 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176310179 Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils
Authors: H. Taheri Shahraiyni, B. Ataie Ashtiani
Abstract:
Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.Keywords: Finite Difference methods, Richards equation, fullyimplicit, Crank-Nicolson, Runge-Kutta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238610178 Design of Synchronous Torque Couplers
Authors: M. H. Nagrial, J. Rizk, A. Hellany
Abstract:
This paper presents the design, analysis and development of permanent magnet (PM) torque couplers. These couplers employ rare-earth magnets. Based on finite element analysis and earlier analytical works both concentric and face-type synchronous type couplers have been designed and fabricated. The experimental performance has good correlation with finite element calculations.Keywords: Finite Element Analysis, Synchronous TorqueCouplers, Permanent Magnet Torque Couplers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305910177 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis
Authors: Komeil Valipourian
Abstract:
Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.
Keywords: Numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method, FDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70410176 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181810175 On Finite Hjelmslev Planes of Parameters (pk−1, p)
Authors: Atilla Akpinar
Abstract:
In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.
Keywords: Finite Klingenberg plane, finite hyperbolic Klingenberg plane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115510174 Finite Element Analysis of Crack Welding Process
Authors: Thomas Jin-Chee Liu
Abstract:
The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.
Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236710173 Finite Element Analysis of Composite Frames in Wheelchair under Upward Loading
Authors: Thomas Jin-Chee Liu, Jin-Wei Liang, Wei-Long Chen, Teng-Hui Chen
Abstract:
The finite element analysis is adopted in this primary study. Using the Tsai-Wu criterion and delamination criterion, the stacking sequence [45/04/-454/904]s is the final optimal design for the wheelchair frame. On the contrary, the uni-directional laminates, i.e. [9013]s, [4513]s and [-4513]s, are bad designs due to the higher failure indexes.
Keywords: Wheelchair frame, stacking sequence, failure index, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376710172 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.
Keywords: Finite element, steel shear wall, nonlinear, earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184910171 Group Velocity Dispersion Management of Microstructure Optical Fibers
Authors: S. M. Abdur Razzak, M. A. Rashid, Y. Namihira, A. Sayeem
Abstract:
A simple microstructure optical fiber design based on an octagonal cladding structure is presented for simultaneously controlling dispersion and leakage properties. The finite difference method with anisotropic perfectly matched boundary layer is used to investigate the guiding properties. It is demonstrated that octagonal photonic crystal fibers with four rings can assume negative ultra-flattened dispersion of -19 + 0.23 ps/nm/km in the wavelength range of 1.275 μm to 1.68 μm, nearly zero ultra-flattened dispersion of 0 ± 0.40 ps/nm/km in a 1.38 to 1.64 μm, and low confinement losses less than 10-3 dB/km in the entire band of interest.
Keywords: Finite difference modeling, group velocity dispersion, optical fiber design, photonic crystal fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182810170 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162610169 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.
Keywords: Curved stretching sheet, finite difference method, MHD, variable thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110710168 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis
Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying
Abstract:
Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.
Keywords: Random vibration, finite element simulation, fatigue, frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471510167 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects
Authors: M. Bayareh, S. Mortazavi
Abstract:
The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.Keywords: drop migration, shear flow, front-tracking method, finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202510166 Mechanism of Damping in Welded Structures using Finite Element Approach
Authors: B. Singh, B. K. Nanda
Abstract:
The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.Keywords: Amplitude, finite element method, slip damping, tack welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193410165 Forced Vibration of a Planar Curved Beam on Pasternak Foundation
Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag
Abstract:
The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.
Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109710164 Sub-Impact Phenomenon of Elasto-Plastic Free-Free Beam during a Strike
Authors: H. Rong, X. C. Yin, J. Yang, Y. N. Shen
Abstract:
Based on Rayleigh beam theory, the sub-impacts of a free-free beam struck horizontally by a round-nosed rigid mass is simulated by the finite difference method and the impact-separation conditions. In order to obtain the sub-impact force, a uniaxial compression elastic-plastic contact model is employed to analyze the local deformation field on contact zone. It is found that the horizontal impact is a complicated process including the elastic plastic sub-impacts in sequence. There are two sub-zones of sub-impact. In addition, it found that the elastic energy of the free-free beam is more suitable for the Poisson collision hypothesis to explain compression and recovery processes.Keywords: beam, sub-impact, elastic-plastic deformation, finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186210163 Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates
Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy
Abstract:
The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.
Keywords: Vibrations, Step by Step Integration, Stepped plate, Boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184610162 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration
Authors: Maria Neagu
Abstract:
This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.
Keywords: Finite difference method, natural convection, porous medium, scale analysis, thermal stratification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160910161 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's
Authors: J. Sulaiman, M. Othman, M. K. Hasan
Abstract:
Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.
Keywords: MEG iteration, second-order finite difference, weighted parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171310160 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.Keywords: Explicit group method, finite difference, Helmholtz equation, rotated grid, standard grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117710159 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Authors: A. Mahdy
Abstract:
In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79710158 Analysis of Plates with Varying Rigidities Using Finite Element Method
Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo
Abstract:
This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.
Keywords: ANSYS, Finite Element Method, Plates, Static Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295110157 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds
Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff
Abstract:
A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.
Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498610156 Performance Boundaries for Interactive Finite Element Applications
Authors: Jaewon Jang, Gregory R. Miller
Abstract:
This paper presents work characterizing finite element performance boundaries within which live, interactive finite element modeling is feasible on current and emerging systems. These results are based on wide-ranging tests performed using a prototype finite element program implemented specifically for this study, thereby enabling the unified investigation of numerous direct and iterative solver strategies and implementations in a variety of modeling contexts. The results are intended to be useful for researchers interested in interactive analysis by providing baseline performance estimates, to give guidance in matching solution strategies to problem domains, and to spur further work addressing the challenge of extending the present boundaries.Keywords: Finite Elements, Interactive Modeling, NumericalAnalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136210155 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay
Authors: Liqiong Liu, Shouming Zhong
Abstract:
In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.
Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191310154 On the Fp-Normal Subgroups of Finite Groups
Authors: Shitian Liu, Deqin Chen
Abstract:
Let G be a finite group, and let F be a formation of finite group. We say that a subgroup H of G is p F -normal in G if there exists a normal subgroup T of G such that HT is a permutable Hall subgroup of G and G G (HKeywords: Finite group, Fp -normal subgroup, Sylowsubgroup, Maximal subgroup
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201