On the Fp-Normal Subgroups of Finite Groups

Shitian Liu, and Deqin Chen

Abstract—Let G be a finite group, and let F be a formation of finite group. We say that a subgroup H of G is F_p -normal in G if there exists a normal subgroup T of G such that HT is a permutable Hall subgroup of G and $(H \cap T)H_G/H_G$ is contained in the F-hypercenter $Z^F_\infty(G/H_G)$ of G/H_G . In this note, we get some results about the F_p -normal subgroups and then use them to study the structure of finite groups.

Keywords—Finite group, F_p -normal subgroup, Sylow subgroup, Maximal subgroup

I. INTRODUCTION

 $oldsymbol{A}$ LL groups considered in this paper are finite, and G denotes a finite group. The notation and terminology are standard, as in [1]. Recall that, for a class F of groups, a chief factor H/K of a group G is called F -central (see [2]) if $[G/K](G/C_G(H/K)) \in F$. The symbol $Z_{\infty}^F(G)$ denotes the F-hypercenter of a group G, that is, the product of all such normal subgroups H of G whose G -chief factors are F - central. A subgroup H of G is said to be F -hypercenter [3] in G if $H \leq Z_{\infty}^{F}(G)$ A class F of groups is called a formation if it is closed under a homomorphic image and a subdirect product. It is clear that every group Ghas a smallest normal subgroup (called F -residual of G and denoted by G^F) with quotient in F. A formation F is said to be saturated if it contains every group G with $G/\phi(G) \in F$. We use U and S to denote the formations of all supersoluble groups and soluble groups, respectively. Recall that a subgroup H of G is said to be complemented in G if G has a subgroup B such that G = AB and $A \cap B = 1$ (see [4]). A subgroup H of G is said to be F_h -normal [5] (or c -normal [6], F_c -normal [7] or F_n -supplemented [8]) in G

Shitian Liu is with the School of Science, Sichun University of Science and Engineering, Zigong Sichuan, 643000, P.R.China (Correspondence Author E-mail: liust@suse.edu.cn.) of The author is supported by the Schooe of Science of SUSE (Grant 09LXYb02) and NSF of SUSE (Grant Number: 2010XJKYL017)

Deqin Chen is with the School of Science, Sichun University of Science and Engineering, Zigong Sichuan, 643000, P.R.China (E-mail: chendeqin@suse.edu.cn). The author is supported by NSF of SUSE (Grant Number: 2010XJKYL017)

if there exists a normal subgroup T of G such that HT is a normal Hall subgroup of G, and $(H\cap T)H_G/H_G \leq Z_{\infty}^F(G/H_G)$. By using the above subgroups, people have obtained some interesting results (see [5,7,8,9]}). As a development of this topic, we now introduce the following new concept.

Definition 1.1 Let F be a class of groups. A subgroup H of \$G is said to be F_p -normal in G if there exists a normal subgroup T of G such that HT is a permutable Hall subgroup of G, and $(H\cap T)H_G/H_G \le Z_\infty^F(G/H_G)$ Obviously, all normal subgroups, c-normal subgroups, F_n -supplemented subgroups and F_n -normal subgroups are all F_p -normal in G for any nonempty saturated formation F. However, the following example shows that the converse is not true. For example, if a subgroup H is c-normal in G, then there exists a normal subgroup K such that G = HK and $(H\cap T)H_G/H_G = 1 \le Z_\infty^F(G/H_G)$

However, the following example shows that the converse is not

Example 1.2. Let S_4 be the symmetric group of degree 4, P be the Sylow 3-subgroup of S_4 and Z be a group of order p with $p \neq 2,3$. Let $G = ZtS_4 = [K]S_4$ be a regular wreath product, where K is the base group of the regular wreath product G. Then PK is a permutable Hall subgroup and $P \cap K = 1$. Hence P is F_p -normal in G for any nonempty saturated formation F. However, it is easy to see that P is not normal, C-normal, C-normal and is not C-supplemented in C (in fact, for example, C is the only normal subgroup of C such that C is not cyclic, C is not cyclic, C is not cyclic, C is not C is normal in C is not C is normal in C is not C is normal in C in C

In this paper, we study the properties of $\,F_p$ -normal subgroups and use them to give some new characterizations of some classes of groups. Some previously known results are generalized.

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:6, 2011

II. PRELIMINARIES

A formation F is said to be S -closed (resp. S_n -closed) if it contains all subgroups (resp. all normal subgroups) of all its groups.

We cite the following lemmas which will be useful in the sequel.

Lemma 2.1 [9, Lemma 2.1] Let G be a group and $A \leq G$. Let F be a non-empty saturated formation and $Z = Z^F_\infty(G)$. Then

- (1) If A is normal in G, then $AZ/A \leq Z_{\infty}^{F}(G/A)$;
- (2) If F is S -closed, then $Z \cap A \leq Z_{\infty}^{F}(G)$;
- (3) If F is S_n -closed and A is normal in G , then
- $Z \cap A \leq Z_{\infty}^{F}(G)$;
- (4) If $G \in F$, then Z = G.

Lemma 2.2 Let F be a saturated formation containing U and G a group with a normal subgroup E such that $G/E \in F$. If E is cyclic, then $G \in F$.

Proof. We assume that E is a minimal normal subgroup of G such that $E \not\subseteq \phi(G)$. Let M be a maximal subgroup such that G = [E]M and let $C = C_G(E)$. Then $C \cap M = M_G \lhd G$, and so we have $G/M_G = [EM_G/M_G](M/M_G) \in F$. Hence $G \cong G/(E \cap M_G) \subseteq G/E \times G/M_G$ is supersoluble. Thus $G \in F$.

This completes the proof. □

Lemma 2.3 [14, Lemma 2.6] Let N be a soluble normal subgroup of G. If $N \cap \phi(G) = 1$, then F(N) is the direct product of minimal normal subgroups of G contained in N.

Definition 2.4 Let H be a subgroup of G. A subgroup K of G is said to be a supersoluble supplement of H in G if K is a supersoluble subgroup of G such that G = HK

Lemma 2.5 [5, Lemma 2.6] Suppose that H has a supersoluble supplement in G .

- (1) If $N \triangleleft G$, then HN/N has a supersoluble supplement in G/N.
- (2) If $H \le K \le G$, then H has a supersoluble supplement in K.

Lemma 2.6 [5, Lemma 2.7] Suppose that G has a unique minimal normal subgroup N and $\phi(G)=1$. If N is soluble, then there exist a maximal subgroup M of G such

that G = [N]M , and $N = O_p(G) = F(G) = C_G(N)$ for some prime p .

Definition 2.7 Let F be a class of groups. A subgroup H of G is said to be F_p -normal in G if there exists a normal subgroup T of G such that HT is a permutable Hall subgroup of G, and $(H \cap T)H_G/H_G \leq Z_\infty^F(G/H_G)$.

Lemma 2.8 Let G be a group and $H \leq K \leq G$. Then

- (1) H is F_p -normal in G if and only if G has a normal subgroup T such that HT is a permutable Hall subgroup of G, $H_G \leq T$ and $(H/H_G) \cap (T/H_G \leq Z_\infty^F(G/H_G)$.
- (2) Suppose that H is normal in G . Then K/H is F_p -normal in G/H if and only if K is F_p -normal in G .
- (3) Suppose that H is normal in G. Then for every F_p -normal subgroup E in G satisfying $(\mid H\mid,\mid E\mid)=1$, the subgroup HE/H is F_p -normal in G/H.
- (4) If H is F_p -normal in G and F is hereditary, then H is F_p -normal in K .
- (5) If K is normal in G and F is normally hereditary, then H is $F_{\scriptscriptstyle p}$ -normal in K .
- (6) If $G \in {\cal F}$, then every subgroup of G is ${\cal F}_p$ -normal in G .
- Proof. (1) Assume that H is F_p -normal in G and let T be a normal subgroup of G such that HT is a permutable Hall subgroup of G and

 $(H\cap T)H_G/H_G\leq Z_\infty^F(G/H_G)$. Let $T_0=TH_G$. Then T_0 is normal in G, $HT_0=HTH_G=HT$ is a permutable Hall subgroup of G and

$$(T_0/H_G) \cap (H/H_G) = (T_0 \cap H)/H_G$$
$$= (T \cap H)H_G/H_G \le Z_{\infty}^F(G/H_G)$$

(2) First assume that K/H is F_p -normal in G/H. Then by (1), G/H has a normal subgroup T/H such that (K/H)(T/H) is a permutable Hall subgroup of G/H, $(K/H)_{G/H} \leq T/H$ and $(T/H)/(K/H)_{G/H} \cap (K/H)/(K\cap H)_{G/H}$ $\leq Z_{\infty}^F((G/H)/(K/H)_{G/H})$

G/H.

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:6, 2011

Then T is normal in G and KT is a permutable Hall subgroup of G. Besides, since $(T/H)/(K/H)_{G/H} \cap (K/H)/(K/H)_{G/H} = (T/H)/(K_G/H) \cap (K/H)/(K_G/H) = ((T\cap K)/H)/(K_G/H)$ and $Z^F_\infty((G/H)/(K/H)_{G/H}) = Z^F_\infty((G/H)/(K/H)_{G/H})$, we have $(T\cap K)/K_G = (T/K_G) \cap (K/K_G) \leq Z^F_\infty(G/K_G)$. Hence, K is F_p -normal in G. Analogously, one can show that if K is F_p -normal in G, then K/H is F_p -normal in

has a normal subgroup T such that ET is a permutable Hall subgroup of G, $E_G \leq T$ and $(E/E_G) \cap (T/E_G) \leq Z_\infty^F(G/E_G)$. We will prove that HE/H is F_p -normal in G/H. By (1), we only need to show that HE is F_p -normal in G. Since (|H|,|E|)=1, we have $H \leq T$ and so $T \cap HE = H(T \cap E) \leq HZ$, where $Z/E_G = Z_\infty^F(G/E_G)$. Hence from the G-isomorphism

(3) Assume that E is F_p -normal in G . Then by (2), G

$$HZ/HE_G = HE_GZ/HE_G$$

 $\cong Z/(Z \cap HE_G) = Z/E_G(Z \cap H),$

we have $HZ/HE_G \le X/HE_G = Z_{\infty}^F(G/HE_G)$ and so $(HE \cap T)/HE_G \le X/HE_G$. Let $D = HE_G$. By Lemma 2.3.

 $(X/HE_G)(D/HE_G)/(D/HE_G) \le Z_{\infty}^F(G/HE_G)$.
Therefore.

$$(TD/D) \cap (HE/D) = D(T \cap HE)/D \le Z_{\infty}^{F}(G/D)$$

and so HE is F_{n} -normal in G .

(4) Let T be a normal subgroup of G such that HT is a permutable Hall subgroup of G , $H_G \leq T$ and

$$(H/H_G) \cap (T/H_G) \leq Z_{\infty}^F(G/H_G)$$
. Let $T_1 = H_G(H \cap K)$. Since $K = K \cap HT = H(K \cap T)$, we have $K = HT_1$. By Lemma 2.2(3), T_1 is normal in K .

$$(T_1/H_G) \cap (H/H_G)$$

$$= H_G(H \cap T \cap K)/H_G$$

$$\leq Z/H_G = Z_{\infty}^F(G/H_G) \cap K/H_G.$$

Assume that F is hereditary. Then by Lemma 2.3(2), $Z/H_G \leq Z_{\infty}^F(G/H_G) \text{ . By Lemma 2.3(1)},$ $(Z/H_G)(HK/H_G)/(HK/H_G)$ $\leq Z_{\infty}^F((K/H_G)/(H_K/H_G))$ and so $(T_1/H_K) \cap (H/H_K) \leq Z_{\infty}^F(K/H_K)$. Hence, H is F_n -normal in K

- (5) See the proof of (4).
- (6) Assume that $G\in F$ and let H be an arbitrary subgroup of G. By Lemma 2.3(6), $Z=Z_{\infty}^F(G)=G$, and so by Lemma 2.3(1), $Z_{\infty}^F(G/H_G)=G/H_G$. Hence, $H/H_G\leq Z_{\infty}^F(G/H_G)$.

This completes the proof. \Box

Lemma 2.9 Let R be a soluble minimal normal subgroup of G. If there exists a maximal subgroup R_1 of R such that R_1 is U_p -normal in G, then R is a group of prime order.

Proof. Assume that |R| is not a prime. Then $R_1 \neq 1$. Since R is a minimal normal subgroup R_1 of R, $(R_1)_G = 1$. Then, by hypothesis, there exists a normal subgroup K of G such that R_1K is a permutable Hall subgroup of G, $R_1 \cap K \leq Z_{\infty}^F(G)$ and R_1K is subnormal in G. Hence $R \leq R_1K$ since the minimality of R. Since $R \cap K \lhd G$, $R \cap K = 1$ or $R \cap K = R$. If $R \cap K = 1$, then $R = R \cap R_1K = R_1(R \cap K) = R_1$, a contradiction. If $R \cap K = R$, then $R \leq K$. Hence, $R_1 \leq K$ and therefore, $1 \neq R_1 = R_1 \cap K \leq Z_{\infty}^U(G)$. Thus $1 \neq R_1 \leq Z_{\infty}^U(G) \cap R \lhd G$. It follows, from the minimality of R, that $R \leq Z_{\infty}^U(G)$. Consequently, |R| is a prime.

The final contradiction completes the proof. \Box

III. CHARACTERIZATION OF SUPERSOLUBLE GROUPS Theorem 3.1 Let F be a saturated formation containing U. Then $G \in F$ if and only if there exists a soluble normal subgroup H of G such that $G/H \in F$, and every maximal subgroup of every Sylow subgroup of F(H), which has no supersoluble supplement in G, is U_p -normal in G.

Proof. The necessity part is obvious. We only need to prove the sufficienty part. Suppose that the assertion is false and let G be a contraexample with |G||H| minimal. Let P be an

arbitrary Sylow $\,p\,$ -subgroup of $\,F(H)$. Since $\,P\,$ char $\,F(H)\,$ char $\,H\, \lhd G$. We proceed the proof via the following steps.

Step 1. $\phi(G) = 1$.

If $\phi(G) \neq 1$, then $\phi(G) \leq F(H)$. Let $R = \phi(G)$. Clearly, $(G/R)/(H/R) \cong G/H \in F$. By [10, III, Theorem 3.5], we have that F(H/R) = F(H)/R. Let P/R be a Sylow p -subgroup of F(H)/R , and P_1/R be a maximal subgroup of P/R. Then P_1 is a maximal subgroup of P. By hypothesis, P_1 either has supersoluble supplement in G or is U_p -normal in G . It follows from Lemmas 2.5(1) and 2.8(2), P_1/R either has supersoluble supplement in G/R or is U_n -normal in G/R . Now Let Q/R be a maximal subgroup of some Sylow \$q\$-subgroup of F(H)/R, where $q \neq p$. Then $Q = Q_1R$, where Q_1 is a maximal subgroup of the Sylow q -subgroup of F(H). By hypothesis, Q_1 either has supersoluble supplement in G or is U_p -normal in G . It follows from Lemmas 2.5(1) and 2.8(3), that Q_1R/R either has supersoluble supplement in G/R or is U_p -normal in G/R . Hence (G/R,H/R) satisfies the hypothesis. The minimal choice of (G, H) inplies that $G/R \in F$. Since $G/\phi(G) = G/R$ and F is a saturated formation, we have $G \in F$, a contradiction.

Step 2. $P = Z_1 \times Z_2 \times ... \times Z_m$, where every Z_i is a normal subgroup of order p of G.

Since $P \triangleleft G$, by Step 1, $P \cap \phi(G) = 1$. Hence by Lemma 2.3, $P = Z_1 \times Z_2 \times \ldots \times Z_m$, where all Z_i are minimal normal subgroups of G. Next, we prove that all Z_i are of prime order p.

Assume that $\mid Z_i \mid > p$ for some i. Without loss of generality, let $\mid Z_1 \mid > p$. Let Z_1^* be a maximal subgroup of Z_1 . Then $Z_1^* \times Z_2 \times \ldots Z_m = P_1$ is a maximal subgroup of a Sylow p-subgroup P of F(H). Set $T = Z_2 \times \ldots \times Z_m$, then $(P_1)_G = T$. If P_1 has a supersoluble supplement K in G, then $G = P_1K = Z_1^*Z_2 \ldots Z_mK = Z_1^*TK$. Since $T \lhd G$, TK is a subgroup of G and so $\mid G: TK \mid \leq \mid Z_1^* \mid < \mid Z_1 \mid$. Since

 $(Z_1 \cap TK)^G = (Z_1 \cap TK)^{Z_1TK}$ $=(Z_1\cap TK)^{TK}=Z_1\cap TK,$ we have $Z_1 \cap TK \triangleleft G$. Hence, we have either $Z_1 \cap TK = 1$ or $Z_1 \cap TK = Z_1$. If $Z_1 \cap TK = 1$, then we have $|G:TK|=|Z_1|>|Z_1^*|$, a contradiction. If $Z_{\scriptscriptstyle 1} \cap TK = Z_{\scriptscriptstyle 1}$, then $Z_{\scriptscriptstyle 1} \leq TK$ and so G = TK . Since $T \triangleleft G$, then $K \cong G/T = TK/T = K/T \cap K$ is supersoluble as K is a supersoluble supplement and $Z_1 \cong Z_1T/T$ is chief factor of G/T. It follows that $\mid Z_1 \mid = \mid Z_1T/T \mid = p$, which is a contradiction. Thus P_1 is U_p -normal in G, and so by Lemma 2.8(1), there exists a normal subgroup N of G such that $(P_1)_G \leq N$, P_1N is a permutable Hall subgroup of G , and $(P_1 \cap N)/(P_1)_G \leq Z_{\infty}^U(G/(P_1)_G)$. Hence $P_1N = Z_1^*Z_2...Z_mN = Z_1^*(P_1)_GN = Z_1^*N$. We only think the following two cases.

Case 1. $Z_1^* \cap N = 1$.

In this case, $(Z_1^*)_G \leq Z_1^* \cap N$ and so $(Z_1)_G = 1 \leq N \lhd Z_{\infty}^F (G/(Z_1^*)_G)$, $Z_1^N = P_1 N$ is a permutable subgroup of G, which implies that Z_1^* is U_p -normal in G. Hence By Lemma 2.9, Z_1 is a cyclic group of order p, a contradiction.

Case 2. $Z_1^* \cap N \neq 1$.

In this case, $1 < Z_1 \cap N \lhd G$ since Z_1 and N are both normal in G. By the minimality of Z_1 , we have either $Z_1 \cap N = 1$ or $Z_1 \cap N = Z_1$. We assume that $Z_1 \cap N = 1$. Hence $Z_1^* \cap N = 1$, a contradiction. Hence $Z_1 \cap N = Z_1$ and so $Z_1 \leq N$. Thus $P_1 N = Z_1^* N = N$. Consequently, $P_1 \leq N$. It follows that $P_1/(P_1)_G = (P_1 \cap N)/(P_1)_G \leq Z_\infty^F (G/(P_1)_G) \cap P/(P_1)_G$. If $P_1 = (P_1)_G$, then $Z_1^* = 1$, which contradicts $Z_1^* \cap N \neq 1$. Hence $(P_1)_G < P_1$ and so $1 \neq P_1/(P_1)_G = (P_1 \cap N)/(P_1)_G$ $\leq Z_\infty^F (G/(P_1)_G) \cap P_1/(P_1)_G$ Since $P = Z_1 \times \ldots Z_m = Z_1 T = Z_1(P_1)_G$, then we have that $P/(P_1)_G = P/P_1 \cong Z_1$ and $P/(P_1)_G$ is a chief factor of

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:5, No:6, 2011

G because of the minimality of Z_1 . This implies that $Z_\infty^F(G/(P_1)_G) \cap P/(P_1)_G$, and thereby, $P/(P_1)_G \leq Z_\infty^F(G/(P_1)_G)$. It means that $|P/(P_1)_G| = p$. Therefore $P_1/(P_1)_G = 1$, which contradicts $P_1/(P_1)_G \neq 1$. Step 3. P = F(H).

Obviously, $P \leq F(H)$. Assume that P < F(H), then since F(H) is nilpotent, there exists a Sylow q-subgroup Q of F(H) and $Q \lhd G$. From Step 2, $P = Z_1 \times \ldots \times Z_m$ and $P = R_1 \times \ldots \times R_s$, where Z_i , R_j are a normal subgroup of G of order p,q respectively. Obviously, $F(H)/Z_i \leq F(H/Z_i)$ and $F(H)/R_j \leq F(H/R_j)$. From Step 1, we have $G/Z_i \in F$ and $G/R_j \in F$. It follows that $G/1 \cong G/Z_i \times G/R_j$, a contradiction.

Step 4. $G/F(H) \in F$.

where every Z_i is a normal subgroup of G of order p. Since $G/C_G(Z_i)$ is isomorphic to a subgroup of $Aut(Z_i)$, $G/C_G(Z_i)$ is cyclic and so it lies in U for each i. It follows that $G/\bigcap_{i=1}^m C_G(Z_i) \in U$ Obviously, $C_G(F(H)) = \bigcap_{i=1}^m C_G(Z_i)$. Hence, $G/C_G(F(H)) \in U \subseteq F$. Consequently, $G/(H \cap C_G(F(H))) = G/C_H(F(H)) \in F$. Since F(H) is abelian and H is soluble, we have that $F(H) \leq C_G(F(H)) \leq F(H)$. Thus,

From Steps 2 and 3, $P = F(H) = Z_1 \times Z_2 \times ... \times Z_m$,

Step 5. If K is a minimal normal subgroup of G contained in H, then $G/K \in F$.

 $F(H) = C_G(F(H)) = P$ and so $G/F(H) \in F$.

Since H is soluble, then $K \leq F(H)$. By Lemmas 2.5(1) and 2.8(2), we have that every maximal subgroup of F(H)/K either has a supersoluble supplement in G/K or is U_p -normal in G/K and $(G/K)/(H/K) \in F$. It follow that (G/K,F(H)/K) satisfies the hypothesis. The minimal choice of (G,H) implies that $G/K \in F$.

Step 6. Final contradiction.

Since F is a saturated formation, then by Steps 2 and 4, we have that F(H) is the uniue minimal ormal subgroup of G contained in H, and $F(H)=R_1$ is a cyclic group of order p. Hence by Step 4 and Lemma 2.2, $G \in F$, a contradiction. The final contradiction completes the proof. \Box

Corollary 3.2 [5] Let F be a saturated formation containing U. Then $G \in F$ if and only if there exists a soluble normal subgroup H of G such that $G/H \in F$, and every maximal subgroup of every Sylow subgroup of F(H), which has no supersoluble supplement in G, is U_n -normal in G.

Corollary 3.3 [12] Let G be a soluble group having a normal subgroup H such that G/H is supersoluble. If every maximal subgroup of any Sylow subgroup of F(H) $\mathfrak s$ either is normal in G or has a supersoluble supplement in G, then G is supersoluble.

Corollary 3.4 [14] Let G be a group. If H is a soluble normal subgroup of G with supersoluble quotient G/H and all maximal subgroups of all Sylow subgroups of F(H) are c-normal in G, then G is supersoluble.

Corollary 3.5 [15] If G is a soluble group and all maximal subgroups of Sylow subgroups of F(G) are normal in G, then G is supersoluble

Corollary 3.6 [16] Let F be a saturated formation containing U. Suppose that G is a group with a soluble normal subgroup H such that $G/H \in F$. If all maximal subgroups of any Sylow subgroup of F(H) are c-normal in G, then $G \in F$.

IV. CHARACTERIZATION OF SOLUBLE GROUPS

Theorem 4.1 Let p be the smallest prime dividing |G|, and let P be some Sylow p-subgroup P. Then group G is soluble if and only if every maximal subgroup of P is U_n -normal in G.

Proof. Let P be an arbitrary Sylow subgroup of $\,G$. If $\,G\,$ is soluble, then $\,G\,/\,P_G\,$ is also soluble and so

 $Z_{\infty}^{s}(G/P_{G})=G/P_{G}$. Hence, the necessity part obviously holds. We now prove the sufficiency part. Suppose that the assertion is false, and let G be a counterexample of minimal order. Then by the well-known Feit-Thompson's theorem, we have p=2. Now, we proceed the proof by the following steps.

Step 1. $O_2(G) = 1$.

Let $N = O_2(G) \neq 1$. Obviously, P/N is a Sylow 2-subgroup of G/N. Let M/N be a maximal subgroup of P/N. Then M is a maximal subgroup of P and so M is is Up-normal in G by hypothesis. By Lemma 2.8(2), M/N is Up-normal in G/N. The minimality of G implies that G/N is soluble. It follow that G is soluble, a contradiction.

Step 2. $O_{2'}(G) = 1$.

Let $D = O_{2'}(G) \neq 1$. Then PD/D is a Sylow 2-subgroup of G/D. Let M/D be a maximal subgroup of PD/D. Then there exists a maximal subgroup P_1 of P such that $M = P_1D$ and so P_1 is Up-normal in G by hypothesis. By Lemma 2.8(3), M/D is Up-normal in G/D. Hence G/D is soluble by the minimal choice of G, and so G is soluble, a contradiction.

Step 3. Final contradiction.

Let P_1 be a maximal subgroup of P. By the hypothesis, there exists a normal subgroup K of G such that P_1K is a permutable Hall subgroup of G and $(P_1 \cap K)(P_1)_G / (P_1)_G \le Z_\infty^S (G/(P_1)_G)$. By Steps 1 and 2, we have $(P_1)_G = 1$ and $Z_\infty^S (G) = 1$. This induces that $P_1 \cap K = 1$. Since P_1K is a permutable Hall subgroup of G, $|K_2| = 2$, where K_2 is some Sylow 2-subgroup of K. By \cite[Theorem 10.1.9]{robin}, we see that K is 2-nilpotent, and so K has a normal 2-complement K_2 . Since K_2 char $K \triangleleft G$, $K_2 \triangleleft G$. Hence, by Step 2, $K_2 = 1$, and so |K| = 2, which contradicts Step 1.

This completes the proof. □

Corollary 4.2 Let M be a maximal subgroup of G with |G:M| = r, where r is a prime. Let p be the smallest prime dividing |M|. If there exists a Sylow p-subgroup P of M such that every maximal subgroup of P is Sp-normal in G, then G is soluble.

Proof. By Feit-Thompson's theorem, we may assume that $2\|G\|$. If r=2, then M is normal in G. By Lemma 2.8(4), every maximal subgroup of P is Sp-normal in M. Hence, by Theorem 4.1, M is soluble. It follows that G is soluble. If $r\neq 2$, then p=2\$, and so P is a Sylow 2-subgroup of G. By Theorem 4.1, we have that G is soluble.

This completes the proof. □

REFERENCES

- Robinson, D. J. S. A Course in the Theory of Groups. New York: Springer, 1996W.-K. Chen, *Linear Networks and Systems* (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
- [2] Guo, W. The Theory of Classes of Groups. Beijing-New York-Dordrecht-Boston-London: Science Press/Kluwer Academic Publishers, 2000
- [3] Huppert, B. Zur Theorie der Formationen. Arch. Math. 19, 561-574, 1968.
- [4] Hall, P. Complemented Groups, Journal of the London Mathematical Society, Series I, 12, 201-204, 1937.
- [5] Feng, X. Guo, W. On Fh-normal subgroups of finite groups, Front. Math. China, 5, 653-664, 2010.
- [6] Wang, Y. \$c\$-Normality of groups and its properties. J Algebra, 180, 954-965, 1996.
- [7] Alsheik, A. Y. Jaraden, J. J. Skiba, A. N. On Uc-normal subgroups of finite groups, Algebra Colloquium, 14, 25-36, 2007.
- [8] Yang, N. Guo, W. On Fn-supplemented subgroups of finite groups. Asian-European J of Math, 1(4), 619-629, 2008.
- [9] Guo, W. On F-supplemented subgroups of finite groups, Manuscripta Math, 127, 139-150, 2008.
- [10] Huppert, B. Endliche Gruppen I, Berlin-Heidelberg-New York: Springer-Verlag, 1967.
- [11] Gorenstein. D. Finite groups 2nd dition, Rhode Island: Chelsea Publishing Corporation, 1980.
- [12] Guo, W. Shum, K. P. Skiba, A. N. G-covering subgroups systems for the classes of supersoluble and nilpotent groups. Israel J. Math, 138, 125-138, 2003.
- [13] Kurzweil, H. Stellmacher, B. The Theory of Finite Groups: An Introduction, New York: Springer-Verlag, 2004.
- [14] Li, D. Guo, X. The influence of c-normality of subgroups on the structure of finite groups, J. Pure App. Algebra, 150, 53-60, 2000.
- [15] Ramadan, M. Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math Hungar, 59, 107-110, 1992.
- [16] Wei, H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 29, 2193-2200, 2001.