**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**33035

##### MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

**Authors:**
A. Mahdy

**Abstract:**

**Keywords:**
Tangent hyperbolic nanofluid,
finite difference,
non-similarity,
isothermal cone.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.3461960

**References:**

[1] S.U.S. Choi, ”Enhancing thermal conductivity of fluids with nanoparticles”, ASME Fluids Engng. Div. vol. 231, pp. 99-105, 1995.

[2] C.Y. Cheng, ”Free convection boundary layer flow over a horizontal cylinder of elliptic cross section in porous media saturated by a nanofluid:, Int. Commun. Heat Mass Transfer vol. 39, pp. 931-936, 2012.

[3] A. Mahdy, S.E. Ahmed, ”Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid”, Transport Porous Media vol. 91, pp. 423-435, 2012.

[4] Y.Q. Li, F.C. Wang, H. Liu, H.A. Wu, ”Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate”, Microfluid Nanofluid vol. 18, pp. 111-120, 2015.

[5] J. Sarkar, ”A critical review on convective heat transfer correlations of nanofluids”, Renew Sust. Energ. Rev. vol. 15, pp. 3271-3277, 2011.

[6] J. Buongiorno, ”Convective transport in nanofluids”, J. Heat Transfer vol. 128, pp. 240-250, 2006.

[7] O.D. Makinde, A. Aziz, ”Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci. vol. 50, pp. 1326-1332, 2011.

[8] A. Mahdy, A.J. Chamkha, ”Heat transfer and fluid flow of a non-Newtonian nanofluid over an unsteady contracting cylinder employing Buongiorno’s model”, Int. J. Numer. Methods Heat & Fluid Flow vol. 25(4), pp. 703-723, 2015.

[9] A. Mahdy, ”Aspects of homogeneous-heterogeneous reactions on natural convection flow of micropolar fluid past a permeable cone”, App. Math. Comput. vol. 352, pp. 59-67, 2019.

[10] A.J. Chamkha, R.S.R. Gorla, K. Ghodeswar, ”Nonsimilar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid”, Transport Porous Media vol. 86(1), pp. 13-22, 2010.

[11] S. Choi, ”Nanofluids: from vision to reality through research”, J. Heat Transfer vol. 131(3), pp. 1-9, 2009.

[12] A. Mahdy, ”Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid”, J. Braz. Soc. Mech. Sci. Engin., vol. 38(1), pp. 67-76, 2016.

[13] E.A. Sameh, A. Mahdy, ”Natural convection flow and heat transfer enhancement of a nanofluid past a truncated cone with magnetic field effect”, World J. Mech. vol. 2, pp. 272-279, 2012.

[14] E. Abu-Nada, H.F. Oztop, I. Pop, ”Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection”, Superlattices Microstructures vol. 51(3), pp. 381-395, 2012.

[15] C. Kleinstreuer, Y. Feng, ”Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”, Nano. Res. Lett. vol. 6, pp. 1-13, 2011.

[16] A. Mahdy, M.E. Hillal, ”Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids”, Int. Commun. Heat Mass Transfer vol. 39, pp. 713-719, 2012.

[17] A.V. Kuznetsov, D.A. Nield, ”Natural convective boundary-layer flow of a nanofluid past a vertical plate”, Int. J. Therm. Sci. vol. 49, pp. 243-247, 2010

[18] T. Hayat, M. Shafique, A. Tanveer, A. Alsaedi, ”Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel”, Int. J. Heat Mass Transfer vol. 102, pp. 54-63, 2016.

[19] T. Hayat, A. Shafiq, A. Alsaedi, ”Characteristics of magnetic field and melting heat transfer in stagnation point flow of Tangent hyperbolic liquid”, J. Magn. Magn. Mater. vol. 405, pp. 97-106, 2016.

[20] S.A. Shehzad, Z. Abdullah, F.M. Abbasi, T. Hayat, A. Alsaedi, ”Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface”, J. Magn. Magn. Mater. vol. 399, pp. 97-108, 2016.

[21] M. Waqas, T. Hayat, M. Farooq, S.A. Shehzad, A. Alsaedi, ”Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid”, J. Mol. Liq. vol. 220, pp. 642-648, 2016.

[22] M.A. Abbas, Y.Q. Bai, M.M. Bhatti, M.M. Rashidi, ”Three dimensional peristaltic flow of hyperbolic tangent fluid in nonuniform channel having flexible walls”, Alex. Eng. J. vol. 55, pp. 653-662, 2016.

[23] F.S. Ibrahim, S.M. Abdel-Gaid, R.S.R. Gorla, ”Non-Darcy mixed convection fl ow along a vertical plate embedded in a non-Newtonian fluid saturated porous medium with surface mass transfer”, Int. J. Numer. Meth. Heat & Fluid Flow vol. 10, pp. 397-408, 2000.

[24] A. Mahdy, ”Non-Newtonian nanofluid free convection flow subject to mixed thermal boundary conditions about a vertical cone”, J. Braz. Soc. Mech. Sci. Eng. vol. 35, pp. 951-960, 2014.

[25] H.T. Chen, C.K. Chen, ”Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium”, Int. Commun. Heat Mass Transfer vol. 15, pp. 605-614, 1988.

[26] H.T. Chen, C.K. Chen, ”Free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium”, ASME J. Heat Transfer vol. 110, pp. 257-260. 1988.

[27] T. Salahuddin, M.Y. Malik, A. Hussain, M. Awais, I. Khanb, M. Khan, ”Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point”, Results in Physics vol. 7, pp. 426-434, 2017.

[28] G.K. Ramesh, B.J. Gireesha, T. Hayat, A. Alsaedi, ”Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles”, Alex. Eng. J. vol. 55, pp. 857-865, 2016.

[29] K.A. Yih, ”Effect of radiation on natural convection about a truncated cone”, Int. J. Heat Mass Transfer vol. 42, pp. 4299-4305, 1999.

[30] I. Pop, T.Y. Na, ”Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects”, Numer. Heat Transfer Part A Application vol. 39, pp. 511-530, 2001.

[31] T.Y. Na, J.P. Chiou, ”Laminar natural convection over a frustum of a cone”, App. Sci. Res. vol. 35, pp. 409-421, 1979.

[32] R.S.R. Gorla, W.R. Schoren, H.S. Takhar, ”Natural convection boundary layer flow of a micropolar fluid over an isothermal cone”, Acta Mech. vol. 61, pp. 139-152, 1986.

[33] C.Y. Cheng, ”Natural convection boundary layer flow of a micropolar fluid over a vertical per- meable cone with variable wall temperature”, Int. Commun. Heat Mass Transfer vol. 38, pp. 429-433, 2011.

[34] A. Postelnicu, ”Free convection about a vertical frustum of a cone in a micropolar fluid”, Int. J. Engng. Sci. vol. 44, pp. 672-682, 2006.

[35] M.A. Hossain, C.S. Paul, ”Free convection from a vertical permeable circular cone with non-uniform surface temperature”, Acta Mech. vol. 151, pp. 103-114, 2011.

[36] F.G. Blottner, ”Finite-difference methods of solution of the boundary-layer equation”, AIAA J. vol. 8, pp. 193-205, 1970.

[37] R. Jawad, M.R. Azizah, O. Zurni, ”Numerical investigation of copper-water (Cu-water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: slip effects”, Math. Comput. Appl. vol. 21, pp. 43-58, 2016.

[38] B.C. Pak, Y.I. Cho, ”Hydrodynamic and heat transfer study of dispersed fluid with submicron metallic oxide particles”, Exper. Heat Transfer vol. 11(2), pp. 151-170, 1998.

[39] L. Godson, B. Raja, D.M. Lal, S. Wongwises, ”Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid”, Exper. Heat Transfer vol. 23(4), pp. 317-332, 2010.

[40] S.M. Aminossadati, B. Ghasemi, ”Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure”, Europ. J. Mech. B/Fluids vol. 28(5), pp. 630-640, 2009.