MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

Authors: A. Mahdy

Abstract:

In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.

Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3461960

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720

References:


[1] S.U.S. Choi, ”Enhancing thermal conductivity of fluids with nanoparticles”, ASME Fluids Engng. Div. vol. 231, pp. 99-105, 1995.
[2] C.Y. Cheng, ”Free convection boundary layer flow over a horizontal cylinder of elliptic cross section in porous media saturated by a nanofluid:, Int. Commun. Heat Mass Transfer vol. 39, pp. 931-936, 2012.
[3] A. Mahdy, S.E. Ahmed, ”Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid”, Transport Porous Media vol. 91, pp. 423-435, 2012.
[4] Y.Q. Li, F.C. Wang, H. Liu, H.A. Wu, ”Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate”, Microfluid Nanofluid vol. 18, pp. 111-120, 2015.
[5] J. Sarkar, ”A critical review on convective heat transfer correlations of nanofluids”, Renew Sust. Energ. Rev. vol. 15, pp. 3271-3277, 2011.
[6] J. Buongiorno, ”Convective transport in nanofluids”, J. Heat Transfer vol. 128, pp. 240-250, 2006.
[7] O.D. Makinde, A. Aziz, ”Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci. vol. 50, pp. 1326-1332, 2011.
[8] A. Mahdy, A.J. Chamkha, ”Heat transfer and fluid flow of a non-Newtonian nanofluid over an unsteady contracting cylinder employing Buongiorno’s model”, Int. J. Numer. Methods Heat & Fluid Flow vol. 25(4), pp. 703-723, 2015.
[9] A. Mahdy, ”Aspects of homogeneous-heterogeneous reactions on natural convection flow of micropolar fluid past a permeable cone”, App. Math. Comput. vol. 352, pp. 59-67, 2019.
[10] A.J. Chamkha, R.S.R. Gorla, K. Ghodeswar, ”Nonsimilar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid”, Transport Porous Media vol. 86(1), pp. 13-22, 2010.
[11] S. Choi, ”Nanofluids: from vision to reality through research”, J. Heat Transfer vol. 131(3), pp. 1-9, 2009.
[12] A. Mahdy, ”Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid”, J. Braz. Soc. Mech. Sci. Engin., vol. 38(1), pp. 67-76, 2016.
[13] E.A. Sameh, A. Mahdy, ”Natural convection flow and heat transfer enhancement of a nanofluid past a truncated cone with magnetic field effect”, World J. Mech. vol. 2, pp. 272-279, 2012.
[14] E. Abu-Nada, H.F. Oztop, I. Pop, ”Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection”, Superlattices Microstructures vol. 51(3), pp. 381-395, 2012.
[15] C. Kleinstreuer, Y. Feng, ”Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”, Nano. Res. Lett. vol. 6, pp. 1-13, 2011.
[16] A. Mahdy, M.E. Hillal, ”Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids”, Int. Commun. Heat Mass Transfer vol. 39, pp. 713-719, 2012.
[17] A.V. Kuznetsov, D.A. Nield, ”Natural convective boundary-layer flow of a nanofluid past a vertical plate”, Int. J. Therm. Sci. vol. 49, pp. 243-247, 2010
[18] T. Hayat, M. Shafique, A. Tanveer, A. Alsaedi, ”Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel”, Int. J. Heat Mass Transfer vol. 102, pp. 54-63, 2016.
[19] T. Hayat, A. Shafiq, A. Alsaedi, ”Characteristics of magnetic field and melting heat transfer in stagnation point flow of Tangent hyperbolic liquid”, J. Magn. Magn. Mater. vol. 405, pp. 97-106, 2016.
[20] S.A. Shehzad, Z. Abdullah, F.M. Abbasi, T. Hayat, A. Alsaedi, ”Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface”, J. Magn. Magn. Mater. vol. 399, pp. 97-108, 2016.
[21] M. Waqas, T. Hayat, M. Farooq, S.A. Shehzad, A. Alsaedi, ”Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid”, J. Mol. Liq. vol. 220, pp. 642-648, 2016.
[22] M.A. Abbas, Y.Q. Bai, M.M. Bhatti, M.M. Rashidi, ”Three dimensional peristaltic flow of hyperbolic tangent fluid in nonuniform channel having flexible walls”, Alex. Eng. J. vol. 55, pp. 653-662, 2016.
[23] F.S. Ibrahim, S.M. Abdel-Gaid, R.S.R. Gorla, ”Non-Darcy mixed convection fl ow along a vertical plate embedded in a non-Newtonian fluid saturated porous medium with surface mass transfer”, Int. J. Numer. Meth. Heat & Fluid Flow vol. 10, pp. 397-408, 2000.
[24] A. Mahdy, ”Non-Newtonian nanofluid free convection flow subject to mixed thermal boundary conditions about a vertical cone”, J. Braz. Soc. Mech. Sci. Eng. vol. 35, pp. 951-960, 2014.
[25] H.T. Chen, C.K. Chen, ”Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium”, Int. Commun. Heat Mass Transfer vol. 15, pp. 605-614, 1988.
[26] H.T. Chen, C.K. Chen, ”Free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium”, ASME J. Heat Transfer vol. 110, pp. 257-260. 1988.
[27] T. Salahuddin, M.Y. Malik, A. Hussain, M. Awais, I. Khanb, M. Khan, ”Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point”, Results in Physics vol. 7, pp. 426-434, 2017.
[28] G.K. Ramesh, B.J. Gireesha, T. Hayat, A. Alsaedi, ”Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles”, Alex. Eng. J. vol. 55, pp. 857-865, 2016.
[29] K.A. Yih, ”Effect of radiation on natural convection about a truncated cone”, Int. J. Heat Mass Transfer vol. 42, pp. 4299-4305, 1999.
[30] I. Pop, T.Y. Na, ”Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects”, Numer. Heat Transfer Part A Application vol. 39, pp. 511-530, 2001.
[31] T.Y. Na, J.P. Chiou, ”Laminar natural convection over a frustum of a cone”, App. Sci. Res. vol. 35, pp. 409-421, 1979.
[32] R.S.R. Gorla, W.R. Schoren, H.S. Takhar, ”Natural convection boundary layer flow of a micropolar fluid over an isothermal cone”, Acta Mech. vol. 61, pp. 139-152, 1986.
[33] C.Y. Cheng, ”Natural convection boundary layer flow of a micropolar fluid over a vertical per- meable cone with variable wall temperature”, Int. Commun. Heat Mass Transfer vol. 38, pp. 429-433, 2011.
[34] A. Postelnicu, ”Free convection about a vertical frustum of a cone in a micropolar fluid”, Int. J. Engng. Sci. vol. 44, pp. 672-682, 2006.
[35] M.A. Hossain, C.S. Paul, ”Free convection from a vertical permeable circular cone with non-uniform surface temperature”, Acta Mech. vol. 151, pp. 103-114, 2011.
[36] F.G. Blottner, ”Finite-difference methods of solution of the boundary-layer equation”, AIAA J. vol. 8, pp. 193-205, 1970.
[37] R. Jawad, M.R. Azizah, O. Zurni, ”Numerical investigation of copper-water (Cu-water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: slip effects”, Math. Comput. Appl. vol. 21, pp. 43-58, 2016.
[38] B.C. Pak, Y.I. Cho, ”Hydrodynamic and heat transfer study of dispersed fluid with submicron metallic oxide particles”, Exper. Heat Transfer vol. 11(2), pp. 151-170, 1998.
[39] L. Godson, B. Raja, D.M. Lal, S. Wongwises, ”Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid”, Exper. Heat Transfer vol. 23(4), pp. 317-332, 2010.
[40] S.M. Aminossadati, B. Ghasemi, ”Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure”, Europ. J. Mech. B/Fluids vol. 28(5), pp. 630-640, 2009.