Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On the Fp-Normal Subgroups of Finite Groups
Authors: Shitian Liu, Deqin Chen
Abstract:
Let G be a finite group, and let F be a formation of finite group. We say that a subgroup H of G is p F -normal in G if there exists a normal subgroup T of G such that HT is a permutable Hall subgroup of G and G G (HKeywords: Finite group, Fp -normal subgroup, Sylowsubgroup, Maximal subgroup
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079074
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196References:
[1] Robinson, D. J. S. A Course in the Theory of Groups. New York: Springer, 1996W.-K. Chen, Linear Networks and Systems (Book style).Belmont, CA: Wadsworth, 1993, pp. 123-135.
[2] Guo, W. The Theory of Classes of Groups. Beijing-New York-Dordrecht-Boston-London: Science Press/Kluwer Academic Publishers, 2000
[3] Huppert, B. Zur Theorie der Formationen. Arch. Math. 19, 561-574, 1968.
[4] Hall, P. Complemented Groups, Journal of the London Mathematical Society, Series I, 12, 201-204, 1937.
[5] Feng, X. Guo, W. On Fh-normal subgroups of finite groups, Front. Math. China, 5, 653-664, 2010.
[6] Wang, Y. $c$-Normality of groups and its properties. J Algebra, 180, 954-965, 1996.
[7] Alsheik, A. Y. Jaraden, J. J. Skiba, A. N. On Uc-normal subgroups of finite groups, Algebra Colloquium, 14, 25-36, 2007.
[8] Yang, N. Guo, W. On Fn-supplemented subgroups of finite groups. Asian-European J of Math, 1(4), 619-629, 2008.
[9] Guo, W. On F-supplemented subgroups of finite groups, Manuscripta Math, 127, 139-150, 2008.
[10] Huppert, B. Endliche Gruppen I, Berlin-Heidelberg-New York: Springer-Verlag, 1967.
[11] Gorenstein. D. Finite groups 2nd dition, Rhode Island: Chelsea Publishing Corporation, 1980.
[12] Guo, W. Shum, K. P. Skiba, A. N. G-covering subgroups systems for the classes of supersoluble and nilpotent groups. Israel J. Math, 138, 125-138, 2003.
[13] Kurzweil, H. Stellmacher, B. The Theory of Finite Groups: An Introduction, New York: Springer-Verlag, 2004.
[14] Li, D. Guo, X. The influence of c-normality of subgroups on the structure of finite groups, J. Pure App. Algebra, 150, 53-60, 2000.
[15] Ramadan, M. Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math Hungar, 59, 107-110, 1992.
[16] Wei, H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 29, 2193-2200, 2001.