
 

 

  
Abstract—The seismic response of steel shear wall system 

considering nonlinearity effects using finite element method is 
investigated in this paper. The non-linear finite element analysis has 
potential as usable and reliable means for analyzing of civil structures 
with the availability of computer technology. In this research the 
large displacements and materially nonlinear behavior of shear wall 
is presented with developing of finite element code. A numerical 
model based on the finite element method for the seismic analysis of 
shear wall is presented with developing of finite element code in this 
research. To develop the finite element code, the standard Galerkin 
weighted residual formulation is used. Two-dimensional plane stress 
model and total Lagrangian formulation was carried out to present the 
shear wall response and the Newton-Raphson method is applied for 
the solution of nonlinear transient equations. The presented model in 
this paper can be developed for analysis of civil engineering 
structures with different material behavior and complicated geometry. 

   
Keywords—Finite element, steel shear wall, nonlinear, 

earthquake   
I. INTRODUCTION 

N many practical applications the limitation of linear 
elasticity or more generally of linear behavior precludes 

obtaining an accurate assessment of the solution because of 
the presence of nonlinear effects or geometry having a thin 
dimension in one or more directions. Nonlinear behavior of 
solids takes two forms: material nonlinearity and geometric 
nonlinearity. The form of nonlinear material behavior is that 
of elasticity for which the stress is not linearly proportional to 
the strain. More general situations are those in which the 
loading and unloading response of the material is different. 
Typical here is the case of classical elasto-plastic behavior. 

When the deformation of a solid reaches a state for which 
the undeformed and deformed shapes are substantially 
different a state of finite deformation occurs. In this case it is 
no longer possible to write linear strain-displacement or 
equilibrium equations on the undeformed geometry.  

In this study, the analysis of shear shear wall is considered 
as an example to show the effect of nonlinearity. To formulate  

the problem and develop the numerical model, finite 
element method is selected because of its capability in analysis 
of structures with complicated geometry and materially 
nonlinear behavior. 

Finite element procedures are now an important and 
frequently indispensable part of engineering analysis and 
design and the finite element programs are widely used in 
practically all branches of engineering for the analysis of 
structures. In the linear finite element formulation, it is usually 
assumed that the displacements of the finite element 
assemblage are infinitesimally small and that the material is 
linearly elastic.  
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In addition, it is also assumed that the nature of the 

boundary conditions remains unchanged during the 
application of the loads on the finite element assemblage. 
With these assumptions, the finite equilibrium equations were 
derived for static analysis as following 

RKU =                                                                             (1)                  
This equation corresponds to a linear analysis of a structural 

problem because the displacement response U  is a function of 
the applied load vector R . If the loads are Rα  instead of R , 
where α  is a constant, the corresponding displacements are 

Uα . When this is not the case, the analysis will be nonlinear. 
The linearity of a response prediction rests on the 

assumptions just stated and it is instructive to identify in detail 
where this assumptions have entered the equilibrium equation 
in equation (1). The fact that the displacements must be small 
has entered into the evaluation of the matrix K  and load 
vector R  because all integrations have been performed over 
the original volume of the finite elements and the strain-
displacement matrix B  of each element was assumed to be 
constant and independent of the element displacements. The 
assumption of a linear elastic material is implied in the use of 
a constant stress-strain matrix C  and finally the assumption 
that the boundary conditions remain unchanged is reflected in 
the use of constant constrain relations for complete response. 
If during loading a displacement boundary condition should 
change, a degree of freedom which was free becomes 
restrained at a certain load level, the response is linear only 
prior to the change in boundary condition. This situation 
arises, for example, in the analysis of a contact problem [3].      
The above discussion of the basic assumptions used in a linear 
analysis defines a nonlinear analysis and its categorizations.  
In a materially-nonlinear-only analysis, the nonlinear effect 
lies only in the nonlinear stress-strain relation. The 
displacements and strains are infinitesimally small; therefore 
the usual engineering stress and strain measures can be 
employed in the response description. Considering the large 
displacements but small strain conditions, in essence the 
material is subjected to infinitesimally small strains measured 
in a body-attached coordinate frame while this frame 
undergoes large rigid body displacements and rotations. The 
stress-strain relation of the material can be linear or nonlinear 
[4].  

In actual analysis, it is necessary to decide whether a 
problem falls into one or the other category of analysis, and 
this dictates which formulation will be used to describe the 
actual physical situation. Conversely, it may be said that by 
use of a specific formulation, a model of actual physical 
situation is assumed, and the choice of formulation is part of 
the complete modeling process. Surely, the use of the most 
general large strain formulation will always be correct; 
however, the use of a more restrictive formulation may be 
computationally more effective and may also provide more 
insight into the response prediction.  
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II. FINITE ELEMENT FORMULATION 
The basic problem in a general nonlinear analysis is to find the 

state of equilibrium of a body corresponding to the applied loads. 
Assuming that the externally applied loads are described as a function 
of time, the equilibrium conditions of a system of finite elements 
representing the body under consideration can be expressed as  

0=− FR tt                                                                         (2) 
Where Rt  lists the externally applied nodal point forces in the 
configuration at time t and the vector Ft  lists the nodal point 
forces that correspond to the element stresses in this 
configuration [3]. 

Considering the solution of the nonlinear response, it is 
recognized that the equilibrium relation in equation (2) must 
be satisfied throughout the complete history of load 
application and the time variable t may take on any value from 
zero to maximum time of interest. In a static analysis without 
time effects other than the definition of the load levels, time is 
only a convenient variable which denotes different intensities 
of load applications and correspondingly different 
configurations. However, in a dynamic analysis and in static 
analysis with material time effects, the time variable is an 
actual variable to be properly including in the modeling of the 
actual physical situation. Based on these considerations, it is 
realized that the use of time variable to describe the load 
application and history of solution responses is a very general 
approach and corresponds to assertion that a “dynamic 
analysis is basically a static analysis including inertia effects”. 

The basic approach in an incremental step-by-step solution 
is to assume that the solution for the discrete time t is known 
and that the solution for the discrete time tt Δ+  is required, 
where tΔ  is a suitably chosen time increment. Hence, 
considering equation (2) at time tt Δ+  we have 

0=− Δ+Δ+ FR tttt
                                                                 (3) 

where the left superscript denotes “at time tt Δ+ ”. Assume 

that  Rtt Δ+  is independent of the deformations. Since the 
solution is known at time t, it can be written 

FFF ttt +=Δ+                                                                  (4) 
In which F  is the increment in nodal point forces 

corresponding to the increment in element displacements and 
stresses from time t  to time tt Δ+ . This vector can be 

approximated using a tangent stiffness matrix Kt which 
corresponds to the geometric and material conditions at time t , 

KUF t=                                                                             (5) 
where U  is a vector of incremental nodal point 

displacements and 

U
FK t

t
t

∂
∂

=                                                                          (6) 

Hence, the tangent stiffness matrix corresponds to the 
derivative of the internal element nodal point forces Ft with 
respect to the nodal point displacements Ut . Substituting 
equations (4) and (5) into equation (3), we obtain  

FRKU tttt −= Δ+                                                                  (7) 
and solving for U , we can calculate an approximation to 

the displacements at time tt Δ+ , 
UUU ttt +=Δ+                                                                    (8) 

The exact displacements at time tt Δ+  are those that 

correspond to the applied loads Rtt Δ+ . We calculate in 
equation (8) only an approximation to these displacements 
because equation (5) was used. 

Having evaluated an approximation to the displacements 
corresponding to time tt Δ+ , we could solve for an 
approximation to the stresses and corresponding nodal point 
forces at time tt Δ+  and then proceed to the next time 
increment calculations. However, because of the assumption 
in equation (5), such a solution may be subject to very 
significant errors and depending on the time or load step size 
used, may indeed be unstable. In practice, it is therefore 
necessary to iterate until the solution of equation (3) is 
obtained to sufficient accuracy.  

The widely used iteration methods in finite element analysis 
are based on the Newton-Raphson iteration and closely related 
technique. So in this research, the solution process is 
proceeding by using a Newton-Raphson scheme. A 
characteristic of this iteration is that a new tangent stiffness 
matrix is calculated in each iteration. 

To obtain the matrix equation, we consider the motion of a 
general body in a stationary Cartesian coordinate system and 
assume that the body can experience large displacements, 
large strain and a nonlinear constitutive response. The aim is 
to evaluate the equilibrium positions of the complete body at 
the discrete time points ,...3,2,,0 ttt ΔΔΔ  where tΔ is an 
increment in time. To develop the solution strategy, assume 
that the solutions for the static and kinematic variables for all 
time steps from time 0  to time t , inclusive, have been 
obtained. Then the solution process for the next required 
equilibrium position corresponding to time tt Δ+  is typical 
and is applied repetitively until the complete solution path has 
been solved for. Hence, in the analysis we follow all particles 
of the body in their motion, from the original to the final 
configuration of the body, which means that we adopt a total 
Lagrangian formulation of the problem and we used it in the 
finite element model. Considering the analysis of solids and 
structures, a Lagrangian formulation usually represents a more 
natural and effective analysis approach than other formulation.  

III. MATRIX FORM OF EQUATIONS  
The basic steps in the derivation of the governing finite 

element equations are the same as linear analysis. So, it should 
be selected the interpolation functions and the interpolation of 
the element coordinates and displacements with these 
functions in the governing continuum mechanics equations. 
By invoking the linearized principle of virtual displacements 
for each of the nodal point displacements in turn, the 
governing finite element equations are obtained. As in linear 
analysis, we need to consider only a single element of a 
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specific type in this derivation because the governing 
equilibrium equations of an assemblage of elements can be 
constructed using the direct stiffness procedure.  

Using of a standard Galerkin weighted residual and total 
Lagrangian formulation in developed finite element model, we 
derive the governing equations for this formulation and obtain 
the matrix form of equations used in present finite elements 
model. The stiffness matrix and load vector will be as 
following: 

NL
t

L
tt KKK 000 +=                                                                 (9) 

( )uVdBCBuK
V L

tT
L

t
L

t ˆˆ
0

0
0000 ∫=                                        (10) 

( )uVdBSBuK
V NL

ttT
NL

t
NL

t ˆˆ
0

0
0000 ∫=                                    (11) 

∫=
V

tT
L

tt VdSBF
0

0
000

ˆ                                                        (12) 

In which L
t K0  and NL

t K0  are the linear and nonlinear 

strain incremental stiffness matrices. Ft
0  is the vector of 

nodal point force equivalent to the element stresses at time t. 
St

0  and St ˆ
0  are the matrix and vector of second Piola-

Kirchhoff stresses and C0  is the incremental stress-strain 
material property matrices.   

IV. TWO-DIMENSIONAL PLANE STRESS ELEMENTS 
For the derivation of the required matrices and vectors for 

nonlinear analysis of shear wall, we consider a typical two 
dimensional plane strain element in its configuration at time 0 
and at time t. The global coordinates of the nodal points of the 
element are at time 0, kx1

0 , kx2
0  and at time t, kt x1 , kt x2 , 

where NK ,...,2,1= , and N  denotes the total number of 
element nodes. Using the interpolation concepts, we have at 
time 0: 

∑
=

=
N

k

k
k xhx

1
1

0
1

0                                                                (13) 

∑
=

=
N

k

k
k xhx

1
2

0
2

0                                                               (14) 

And at time t: 

∑
=

=
N

k

kt
k

t xhx
1

11
                                                                (15) 

∑
=

=
N

k

kt
k

t xhx
1

22
                                                               (16) 

In which, the kh  are the interpolation functions.  
Since we use the isoparametric finite element discretization, 

the element displacements are interpolated in the same way as 
the geometry. So we can write: 

∑
=

=
N

k

kt
k

t uhu
1

11
                                                                (17) 

∑
=

=
N

k

kt
k

t uhu
1

22
                                                               (18) 

 

The evaluation of strains requires the following derivatives: 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
∂
∂ N

k

k
i

t

j

k

j

i
t

u
x
h

x
u

1
00

     2,1=i                                     (19) 

The derivatives are calculated in the same way as in linear 
analysis using a Jacobian transformation. The chain rule 
relating 1xt , 2xt  to r, s derivatives is written as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

2

1

x

x
J

s

r

t

t
t                                                               (20) 

In which 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

s
x

s
x

r
x

r
x

J tt

tt

t

11

21

                                                         (21) 

Inverting the Jacobian operator J, we obtain: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−

∂
∂

−
∂

∂

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

s

r

r
x

s
x

r
x

s
x

J
x

x
tt

tt

t

t

t

11

22

2

1

det
1                          (22) 

where the Jacobian determinants is  

r
x

s
x

s
x

r
x

J
tttt

t

∂
∂

∂
∂

−
∂

∂
∂

∂
= 2121det                                        (23) 

and the derivatives of the coordinates with respect to r and s 
are obtained using equation (15): 

∑
= ∂

∂
=

∂
∂ N

k

k
i

tki
t

x
r
h

r
x

1

                                                           (24) 

∑
= ∂

∂
=

∂
∂ N

k

k
i

tki
t

x
s

h
s
x

1

                                                           (25) 

 
In which 2,1=i . 
With all required derivatives defined, it is now possible to 

establish the strain-displacement transformation matrices for 
the elements in total Lagrangian formulation. The linear 
strain-displacement transformation matrix is obtained as 
following:  

LI
t

LO
t

L
t BBB 000 +=                                                             (26) 

 
In which 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1,02,01,302,301,202,201,102,10

2,02,302,202,10

1,01,301,201,10

0

...
0...000

0...000

NN

N

N

LO
t

hhhhhhhh
hhhh

hhhh
B

 (27) 

 

⎢
⎢
⎢

⎣

⎡

+++
=

1,20122,20111,10222,10211,10122,1011

2,20122,10222,1012

1,20111,10211,1011

0

hlhlhlhlhlhl
hlhlhl
hlhlhl

BLI
t  
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N
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hl
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021 ∑
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hl
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