Search results for: magnetic properties.
2697 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries
Authors: Tatheer Zahra
Abstract:
Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.Keywords: Auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7152696 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties
Authors: M. N. Othman, M. Bukhari, Z. Halim, S. A. Mohammad, K. Khalid
Abstract:
Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 GPa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.
Keywords: Aluminium, kenaf fiber epoxy, sandwich structure composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22292695 Physical and Mechanical Properties of Particleboard from Bamboo Waste
Authors: Vanchai Laemlaksakul
Abstract:
This research was to evaluate a technical feasibility of making single-layer experimental particleboard panels from bamboo waste (Dendrocalamus asper Backer) by converting bamboo into strips, which are used to make laminated bamboo furniture. Variable factors were density (600, 700 and 800 kg/m3) and temperature of condition (25, 40 and 55 °C). The experimental panels were tested for their physical and mechanical properties including modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding strength (IB), screw holding strength (SH) and thickness swelling values according to the procedures defined by Japanese Industrial Standard (JIS). The test result of mechanical properties showed that the MOR, MOE and IB values were not in the set criteria, except the MOR values at the density of 700 kg/m3 at 25 °C and at the density of 800 kg/m3 at 25 and 40 °C, the IB values at the density of 600 kg/m3, at 40 °C, and at the density of 800 kg/m3 at 55 °C. The SH values had the test result according to the set standard, except with the density of 600 kg/m3, at 40 and 55 °C. Conclusively, a valuable renewable biomass, bamboo waste could be used to manufacture boards.Keywords: Particleboard, Urea Formaldehyde Resin, BambooWaste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56612694 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al
Authors: Samiul Kaiser, M. S. Kaiser
Abstract:
The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β″ (Al3Mg) and β′ (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.
Keywords: Al-alloys, hardness, tensile strength, impact energy, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6872693 Rheological Properties of Polyethylene and Polypropylene Modified Bitumen
Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan
Abstract:
This paper presents a part of research on the rheological properties of bitumen modified by thermoplastic namely linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and polypropylene (PP) and its interaction with 80 pen base bitumen. As it is known that the modification of bitumen by the use of polymers enhances its performance characteristics but at the same time significantly alters its rheological properties. The rheological study of polymer modified bitumen (PMB) was made through penetration, ring & ball softening point and viscosity test. The results were then related to the changes in the rheological properties of polymer modified bitumen. It was observed that thermoplastic copolymer shows profound effect on penetration rather than softening point. The viscoelastic behavior of polymer modified bitumen depend on the concentration of polymer, mixing temperature, mixing technique, solvating power of base bitumen and molecular structure of polymer used. PP offer better blend in comparison to HDPE and LLDPE. The viscosity of base bitumen was also enhanced with the addition of polymer. The pseudoplastic behavior was more prominent for HDPE and LLDPE than PP. Best results were obtained when polymer concentration was kept below 3%Keywords: Polymer modified bitumen, Linear low densitypolyethylene, High density polyethylene, Polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44292692 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature
Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun
Abstract:
CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.
Keywords: CoNiCrAlY coatings, mechanical properties, DBTT, miniature specimen testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7792691 The Effect of Electrical Stimulation Intensity on VEGF Expression and Biomechanical Properties during Wound
Authors: M R Asadi, G Torkaman, M Hedayati
Abstract:
We evaluated the effect of sensory (direct current (DC), 600μA) and motor (monophasic current, pulse duration 300μs, 100 Hz, 2.5-3mA) intensities of cathodal electrical stimulation (ES) current to release VEGF and biomechanical properties of wound. 54 male Sprague-dawley rats were randomly assigned into one control and two experimental groups. A full thickness skin incision was made on animals- dorsal region. The experimental groups received ES for 1h/day and every other day. VEGF expression was measured in skin on the 7th day after surgical incision and tensile strength was measured on 21st day. On the 7th day, the values of skin VEGF in the sensory group were significantly greater than those of the other groups (p < 0.05). Sensory and Motor intensity stimulation, can not improve the biomechanical properties of the repaired wounds. It seems the mechanical environment induced by sensory and motor intensity of electrical stimulation, could not simulate the role of normal daily stress and strain to maturation of collagen fibers and their cross links. Further work is needed to determine the relationship between VEGF expression after ES and its effect on tensile strength of healed wound.Keywords: Biomechanical properties Direct current, Monophasic current, Skin, VEGF
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082690 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.
Keywords: Cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14082689 The Design Optimization for Sound Absorption Material of Multi-Layer Structure
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.
Keywords: Optimization design, multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10092688 On Formalizing Predefined OCL Properties
Authors: Meryem Lamrani, Younès El Amrani, Aziz Ettouhami
Abstract:
The ability of UML to handle the modeling process of complex industrial software applications has increased its popularity to the extent of becoming the de-facto language in serving the design purpose. Although, its rich graphical notation naturally oriented towards the object-oriented concept, facilitates the understandability, it hardly successes to report all domainspecific aspects in a satisfactory way. OCL, as the standard language for expressing additional constraints on UML models, has great potential to help improve expressiveness. Unfortunately, it suffers from a weak formalism due to its poor semantic resulting in many obstacles towards the build of tools support and thus its application in the industry field. For this reason, many researches were established to formalize OCL expressions using a more rigorous approach. Our contribution join this work in a complementary way since it focuses specifically on OCL predefined properties which constitute an important part in the construction of OCL expressions. Using formal methods, we mainly succeed in expressing rigorously OCL predefined functions.
Keywords: Formal methods, Z, OCL, predefined properties, metamodel types.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7762687 Some Physical and Mechanical Properties of Jujube Fruit
Authors: D. Zare, H. Safiyari, F. Salmanizade
Abstract:
In this study, some physical and mechanical properties of jujube fruits, were measured and compared at constant moisture content of 15.5% w.b. The results showed that the mean length, width and thickness of jujube fruits were 18.88, 16.79 and 15.9 mm, respectively. The mean projected areas of jujube perpendicular to length, width, and thickness were 147.01, 224.08 and 274.60 mm2, respectively. The mean mass and volume were 1.51 g and 2672.80 mm3, respectively. The arithmetic mean diameter, geometric mean diameter and equivalent diameter varied from 14.53 to 20 mm, 14.5 to 19.94 mm, and 14.52 to 19.97 mm, respectively. The sphericity, aspect ratio and surface area of jujube fruits were 0.91, 0.89 and 926.28 mm2, respectively. Whole fruit density, bulk density and porosity of jujube fruits were measured and found to be 1.52 g/cm3, 0.3 g/cm3 and 79.3%, respectively. The angle of repose of jujube fruit was 14.66° (±0.58°). The static coefficient of friction on galvanized iron steel was higher than that on plywood and lower than that on glass surface. The values of rupture force, deformation, hardness and energy absorbed were found to be between 11.13-19.91N, 2.53- 4.82mm, 3.06-5.81N mm and 20.13-39.08 N/mm, respectively.Keywords: Mechanical and Physical properties, Jujube fruits, friction coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18072686 Using Sugar Mill Waste for Biobased Epoxy Composites
Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli
Abstract:
In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.Keywords: Epoxy resin, biocomposite, lime waste, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17352685 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique
Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate
Abstract:
New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.
Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22642684 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete
Authors: S. U. Khan, T. Ayub, N. Shafiq
Abstract:
The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.
Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15882683 Effect of Aging Treatment on Mechanical Properties of Non-Flammable AZ91D Mg Alloy
Authors: Ju Hyun Won, Hyun Woo Lee, Seok Hong Min, Tae Kwon Ha
Abstract:
Microstructure and mechanical properties of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were investigated in this study. Solid solution treatment of AZ91D Mg alloy with Ca and Y was successfully conducted at 420oC and supersaturated microstructure with almost all beta phases resolved into matrix was obtained. After solid solution treatment, the alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced from the results as at the temperature of 200oC for 10 hrs. Hot rolling was also carried out at 400oC by the reduction ratio of 0.6 through 5 passes followed by recrystallization treatment. Tensile and compressive properties were measured at room temperature on the specimens of each process, i.e. as-cast, solution treatment, hot rolling, and recrystallization.Keywords: Mg alloy, AZ91D, nonflammable alloy, hot rolling, peak aging, tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15672682 Properties of SMA Mixtures Containing Waste Polyethylene Terephthalate
Authors: Taher Baghaee Moghaddam, Mohamed Rehan Karim
Abstract:
Utilization of waste material in asphalt pavement would be beneficial in order to find an alternative solution to increase service life of asphalt pavement and reduce environmental pollution as well. One of these waste materials is Polyethylene Terephthalate (PET) which is a type of polyester material and is produced in a large extent. This research program is investigating the effects of adding waste PET particles into the asphalt mixture with a maximum size of 2.36 mm. Different percentages of PET were added into the mixture during dry process. Gap-graded mixture (SMA 14) and PG 80-100 asphalt binder have been used for this study. To evaluate PET reinforced asphalt mixture different laboratory investigations have been conducted on specimens. Marshall Stability test was carried out. Besides, stiffness modulus test and indirect tensile fatigue test were conducted on specimens at optimum asphalt content. It was observed that in many cases PET reinforced SMA mixture had better mechanical properties in comparison with control mixture.Keywords: Asphalt mixture, Environment, Mix properties, Polyethylene terephthalate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21052681 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites
Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties to replace inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile and flexural behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was treated by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidences that a good adhesion interfacial between fibers-matrix caused an increase strength and modulus flexural as well as tensile strength in the modified fibers/HDPE composites when compared to the pure HDPE and untreated fibers reinforced composites.Keywords: Mechanical properties, palm fibers, polymer composites, surface treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22952680 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries
Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik
Abstract:
The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33142679 Fatigue Properties of Steel Sheets Treated by Nitrooxidation
Authors: M. Maronek, J. Barta, P. Palcek, K. Ulrich
Abstract:
Low carbon deep drawing steel DC 01 according to EN 10130-91 was nitrooxidized in dissociated ammonia at 580°C/45 min and consequently oxidised at 380°C/5 min in vapour of distilled water. Material after nitrooxidation had 54 % increase of yield point, 34 % increase of strength and 10-times increased resistance to atmospheric corrosion in comparison to the material before nitrooxidation. The microstructure of treated material consisted of thin ε-phase layer connected to layer containing precipitated massive needle shaped Fe4N - γ' nitrides. This layer passed to a diffusion layer consisting of fine irregular shaped Fe16N2 - α'' nitrides regularly dispersed in ferritic matrix. Fatigue properties were examined under bending load with frequency of 20 kHz and sinusoidal symmetric cycle. The results confirmed positive influence of nitrooxidation on fatigue properties as fatigue limit of treated material was double in comparison to untreated material.
Keywords: steel sheet, fatigue, nitrooxidation, S-N diagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17272678 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring
Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi
Abstract:
Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21902677 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: Environmental industry, Separator, CFD, Fine aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18112676 Development of Material Analyzing Software Using X-Ray Diffraction
Authors: Le Chi Cuong
Abstract:
X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.
Keywords: X-ray diffraction, Nondestructive evaluation, Hardness, Residual stress, Phase determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19662675 A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures
Authors: O. Alidoust, I. Sadrinejad, M. A. Ahmadi
Abstract:
High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.Keywords: Mechanical properties, compressive strength, Flexural strength, pozzolanic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812674 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.
Keywords: Bismuth-based superconductor, critical current density, phase formation, Sr(BO2)2 doping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7632673 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers
Authors: Samah Said, Muhsin Elie Rahhal
Abstract:
Due to the COVID-19 pandemic, disposable plastic-based face-masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Added to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similar to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.
Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542672 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes
Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine
Abstract:
Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.Keywords: Concrete recycling, geopolymer cement, recycled concrete aggregates, sustainable concrete technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16042671 Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect
Authors: B. Akturk, N. Yuzer, N. Kabay
Abstract:
When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.
Keywords: Gas analysis, high temperature, high strength concrete, polypropylene fibers, raw rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22012670 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies
Authors: K. Y. You, Y. L. Then
Abstract:
In recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.
Keywords: Hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38812669 Using Ultrasonic and Infrared Sensors for Distance Measurement
Authors: Tarek Mohammad
Abstract:
The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.Keywords: Distance Measurement, Infrared sensor, Surface properties, Ultrasonic sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150242668 The Bent and Hyper-Bent Properties of a Class of Boolean Functions
Authors: Yu Lou, Chunming Tang, Yanfeng Qi, Maozhi Xu
Abstract:
This paper considers the bent and hyper-bent properties of a class of Boolean functions. For one case, we present a detailed description for them to be hyper-bent functions, and give a necessary condition for them to be bent functions for another case.
Keywords: Boolean functions, bent functions, hyper-bent functions, character sums.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239