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Abstract—The ability of UML to handle the modeling process 

of complex industrial software applications has increased its 

popularity to the extent of becoming the de-facto language in 

serving the design purpose. Although, its rich graphical notation 

naturally oriented towards the object-oriented concept, facilitates 

the understandability, it hardly successes to report all domain-

specific aspects in a satisfactory way. OCL, as the standard 

language for expressing additional constraints on UML models, 

has great potential to help improve expressiveness. Unfortunately, 

it suffers from a weak formalism due to its poor semantic resulting 

in many obstacles towards the build of tools support and thus its 

application in the industry field. For this reason, many researches 

were established to formalize OCL expressions using a more 

rigorous approach. Our contribution join this work in a 

complementary way since it focuses specifically on OCL 

predefined properties which constitute an important part in the 

construction of OCL expressions. Using formal methods, we 

mainly succeed in expressing rigorously OCL predefined 

functions. 

 

metamodel types. 

I. INTRODUCTION 

HE Object Constraint Language (OCL) [1], as part of 

the Unified Modeling Language (UML) [2] standard, 

continues to attract interest due to its ability to present model 

constraints in a friendly way making it easier for non-

programmer to understand the underlying logic. Even though 

OCL is based on logic notation and mathematical set theory, 

it is not completely devoid of ambiguity since it uses English 

text descriptions, a context-free grammar and many 

examples to illustrate the meaning of expressions. In 

addition, OCL suffers from the absence of well-formdness 

rules resulting in weak semantics and significant obstacles 

towards the build of proper tools support. As a consequence, 

there is a need for clarity to increase its adoption by 

practitioners and then its application at the industry level. 

To meet this need, many attempts were elaborated to 

strengthen OCL semantics by expressing it formally using 

different formal approaches. Up to now, the most relevant 

one remains the work of Mark Ritchers et al. [7] that was 

incorporated into the OCL standard specification [1]. Based 

on a set-theoretic mathematical approach, this contribution 

contains the concept of object models which provide 

information used as context for OCL expressions and 

constraints; it also defines the type system of OCL and the 

set of standard operations. Although this approach gives 

more rigors to OCL language, it does not include the 

formalization of OCL predefined properties and it has the 

inconvenient to require a strong mathematical background 
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which is not necessary the background for many software 

engineering stakeholders. Therefore, many other 

contributions exist nowadays with the common purpose to 

strengthen OCL syntax and semantics. Among them, Flake 

et al. [8, 9] extended the formal semantics given in the OMG 

specification by supplying descriptions of ordered sets, 

global OCL variables definitions, UML statechart states and 

OCL messages. Gergly et al. [10] created a new formalism 

for OCL based on the Abstract State Machines technique 

called OCLASM. While Kyas et al. [11] translated the UML 

and OCL constraints into the language of the theorem prover 

PVS. Also, Brucker et al. [12] established transformations 

rules of OCL constraints into B formal expressions. 

Unfortunately, none of the existing approach includes the 

OCL predefined properties. 

This paper proposes an approach to formalize OCL 

predefined properties as a complementary step to the 

formalization of OCL expressions in a rigorous way that will 

overcome OCL limitations and help building tools for the 

evaluation of OCL expressions. We, first, propose a 

formalization of the OCL metamodel for types upon which 

the formalization of predefined properties will be 

established. The approach used in formalization is based on 

the Laurent Henocque work [5] on formalizing UML class 

structures concept.  

The rest of this paper is organized as follows: In Section 

2, we will explain the formal approach adopted, leading to 

Section 3 where we expose our formal description of OCL 

predefined properties over the formal OCL types 

metamodel. Finally, in Section 4, we will draw conclusions 

and expose some remarks about future work. 

II. FORMAL APPROACH 

This section describes the formal approach followed to 

express OCL predefined properties in a non-ambiguous and 

formal language. The use of formal methods, when applied 

wisely, brings many advantages mostly the elimination of 

ambiguity and the ability to be checked mechanically, 

allowing provability which brings significant benefits in 

terms of understandability and reliability compared to the 

use of natural or semi-formal languages [13]. However, 

formal methods, due to their heavy background 

requirements, are difficult to deal with directly and so, the 

main idea remains the introduction of formal methods 

indirectly in practice, acting in background and completely 

transparent in foreground. 

The following formal approach consists of two points: the 

use of Z as the formal language to express the predefined 

properties definitions and the adoption of a formal model for 

structures concept of the metamodel types on which the 

predefined properties are expressed.  

Z [3, 4], named after Zermelo-Fraenkel set theory, is a 

formal specification language that uses mathematical 

notation and is based on axiomatic set theory, lambda 
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calculus and first-order predicate logic. Its 2-dimensional 

graphical notation, called schema, introduces the grouping 

concept and is represented as below:   

Schema_Name 
Declarations 

 

Or: 

Schema_Name 
Declarations 


Predicates 



Closely related to class structures concept, the schema 

contains a declaration part that may contain references to 

other schemas beside a list of variable declarations and a 

predicate part. Types are also an important aspect of Z since 

it is possible to calculate automatically the type of an 

expression. Each expression is associated with a unique type 

which can be either basic or composite.  

In one hand, we chose Z because of its maturity and the 

availability of type-checker and analysis tools such as 

Z/EVES [14], used to verified the entire specification 

proposed in this contribution, and on the other hand, we 

chose the Laurent Henocque approach because it successes 

in incorporating most Object-oriented modeling structures.  

Lamrani et al. [6] present a detailed explanation of the 

approach currently adopted. However, for clarity reason, we 

provide a brief description of its elementary notion:   

 

 ObjectReference: a set of object references as an 
uninterpreted data type. 

[ObjectReference] 

 

 ReferenceSet: a finite set of object references used to 
model object types. 

ReferenceSet  ObjectReference 

 

 CLASSNAME: class names defined using free type 

syntax of Z. 

CLASSNAME ::= ClassClassifier | ... 

 

 ObjectDef: a predefined super class for all future classes. 

ObjectDef
ref: ObjectReference 

class: CLASSNAME 




 Instances: a function mapping class names to the set of 
instances of that class 

instances: CLASSNAME  ReferenceSet 

 

 NIL: Undefined Object 
NIL: ObjectDef 

 Class: implemented via two constructs: 

 
 A class definition: a schema in which we find, in its 

invariant part, both the class attributes and the 

inheritance relationships and in its predicate part, 
specification of class invariants. 

 
ClassDefClassifier
name: seq CHAR
 

 
 A class specification: a combination of a class 

definition extended with the ObjectDef and class 
references.  

 

ClassSpecClassifier ClassDefClassifier  ObjectDef 

class = ClassClassifier 

In the current contribution, this approach [4] is used to 

formalize OCL types metamodel class structures consisting 

in inheritance and relationships as shown in Section 3. 

III. FORMALIZING OCL PREDEFINED PROPERTIES  

Similarly to Z, OCL is a typed language since each OCL 

expression has a type. To be considered as correct, all types 

used in the expression must follow the rules of type 

conformance. According to [1], the definition of 

“conformance” in OCL is as follows: 

 

“TypeA conforms to typeB if an instance of typeA can be 

substituted at each place where an instance of typeB is 

expected.” 

 

Also, the rules of type conformance used in OCL 

expressions are: 

 Each type conforms to each of its supertypes. 

 Type conformance is transitive: if type1 conforms to 

type2, and type2 conforms to type3, then type1 

conforms to type3. 

 

Table I summarizes all the type conformance rules from 

the OCL Standard Library as illustrated in [1]: 

 
TABLE I 

TYPE CONFORMANCE RULES 

Type Conforms to/ Is a 

subtype of 

Condition 

Set(T1) Collection(T2) If T1 conforms to T2 

Sequence(T1) Collection(T2) If T1 conforms to T2 

Bag(T1) Collection(T2) If T1 conforms to T2 

OrderedSet(T1) Collection(T2) If T1 conforms to T2 

Integer Real  

InlimiledNatural Integer *is an invalid Integer 

 

The conformance of different types is determined by a 

type hierarchy represented in the OCL metamodel types. 

Subsequently, before starting the formalization of the OCL 

predefined properties, we first proceed to the formalization 

of OCL types metamodel as a basis for the next step.   

A. OCL Types metamodel Formalization 

The presence of a metamodel for OCL types is very 

beneficial to the notion of conformance since OCL is a typed 

language. Figure 1 shows the OCL types metamodel 

extracted from the OCL standard; it has the advantage to be 

fully integrated with the UML metamodel. We contribute in 
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this section to its formalization according to the approach 

described earlier in the previous section. 

Fig. 1. Abstract syntax kernel metamodel for OCL types. 

The following formalization is based on the basic notion 

already presented in the previous Section. It was entirely 

type-checked and verified using Z/Eves tool [14].  

 

The actual name of the class is reserved to denote the 

corresponding type, whereas, the class names are obtained 

by adding the String “Class” before the actual name of the 

class: 

  

CLASSNAME ::ClassClassifier ClassClass 

ClassVoidType … 

 

Each class of the model will be implemented using both 

constructs:  the class definitions and the class specifications: 

 

ClassDefClassifier
name: seq CHAR 



The inheritance relationship is simply represented by 

calling the class definition of the inherited class (e.g. 

Classifier) into the class definition of the inheriting class 

(e.g. Class) as shown in the following example: 

 

ClassDefClass
ClassDefClassifier 


 

Class specifications allow an extension of the class 

definitions with class and object references: 

 

ClassSpecClassifier ClassDefClassifier  ObjectDef 

class = ClassClassifier 
ClassSpecClass ClassDefClass  ObjectDef class = 

ClassClass 
ClassSpecDataType ClassDefDataType  ObjectDef 

class = ClassDataType


The detailed representation of each class type is given 

through an axiomatic definition where the declaration part 

contains the type sets corresponding to all the classes in the 

OCL metamodel types while several axioms constitute the 

properties:  

 

Classifier, Class, VoidType,…: ReferenceSet 


Classifier = instances ClassClassifier  VoidType  Class 

 AnyType 

     MessageType  InvalidType  DataType  

TemplateParameterType 

VoidType = instances ClassVoidType 

Class = instances ClassClass 

… 

 

Each type is the union of all the corresponding class 

instances, and of the types of its subclasses (if existing). 

 

instances ClassClassifier ={o: ClassSpecClassifier | 

o.class = ClassClassifier  o.i} 

instances ClassClass = {o: ClassSpecClass | o.class = 

ClassClass  o.i}
… 

 

The set “instances” holds the schema bindings. These sets 

are pairwise disjoint by construction. 

 

∀ i : instances(ClassClassifier) •  (∃ x : 

ClassSpecClassifier •  x.i = i)

∀ i : instances(ClassClass) •  (∃ x : ClassSpecClass •  

x.i = i) 

… 


The same object reference cannot be used for two distinct 

objects in the same class. 

B. OCL Predefined Properties Formalization 

In OCL, a number of predefined properties are available 

to be instantly used in OCL expressions. These properties 

are textually defined in the OCL standard specification [1] 

and are not included in any formalization efforts of the OCL 

language even though they constitute a significant part of 

many OCL expressions. In this paper, we propose a precise 

and formal definition of the most relevant predefined 

properties as a complementary work to many other 

formalization efforts where these predefined functions are 

not taken into consideration but rather considered as given.  

For the sake of formalization, we define the Boolean type: 

 

Boolean ::TRUE FALSE 

 

The formalized definition of each predefined property is 

expressed in Z by an axiomatic function that returns a 

Boolean (except for oclAsType which returns an ObjectDef) 

and takes the ObjectDef and a ReferenceSet as parameter. 
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- oclIsTypeOf: Evaluates to true if the type of self and 

the type t given in parameter are the same. It deals 

with the direct type of an object and has the 

following signature:  

 

oclIsTypeOf(t:Classifier): Boolean. 

 

In the current formalization, we substitute the type of t by 

a ReferenceSet instead of Classifier. ReferenceSet in the 

formal method approach is a finite set of object references 

and is used to model object types. 

 

oclIsTypeOf: ObjectDef  ReferenceSet  Boolean 


 o: ObjectDef; t: ReferenceSet instances o.class = t 

oclIsTypeOf o t = TRUE 

 o:ObjectDef; t: ReferenceSet instances o.class  

toclIsTypeOf o t = FALSE 

 

 

When instances of o.class referring to object type is equal 

to the ReferenceSet given in parameter, the expression of 

oclIsTypeOf results in TRUE, otherwise it returns FALSE. 

 

- oclIsKindOf: Evaluates to true if the type t corresponds 

to the type of self or is one of its supertypes. In terms 

of conformance, we say that the type of self conforms 

to the type t. It has the following signature:  

 

oclIsKindOf(t:Classifier): Boolean. 

 

oclIsKindOf: ObjectDef  ReferenceSet  Boolean 


 o: ObjectDef; t: ReferenceSet instances o.class  t 

oclIsKindOf o t = TRUE 

o:ObjectDef;t:ReferenceSet instances o.class  

toclIsKindOf o t= FALSE 

 

According to the formalization of the OCL metamodel 

types, each type is the union of all the corresponding class 

instances and of the types of its subclasses. Thus, if instances 

of o.class (referring the object type) are part of the type t 

given in parameter, then the expression oclIsKindOf returns 

TRUE, otherwise it means that the object type is not a 

subtype of t, resulting in FALSE.  

 

- oclAsType: Results to a re-typing or casting of the 

object self when the type t is one of its supertypes. It 

has the following signature:  

 

oclAsType(t:Classifier): instance of Classifier 

 

oclAsType: ObjectDef  ReferenceSet  ObjectDef 


 o: ObjectDef; t: ReferenceSet instances o.class = t 

oclAsType o t = o 

 o: ObjectDef; t: ReferenceSet  instances o.class  t 

oclAsType o t = NIL 

 o: ObjectDef; t: ReferenceSet instances o.class  t 

     r: ObjectDef r.ref = o.ref  instances r.class = t 

oclAsType o t = r 

 

The expression oclAsType will return the object 

unchanged if its type corresponds exactly to the one given in 

parameter. The NIL value is returned in case of a non 

conformance between the object type and the ReferenceSet 

but when the object type is a subtype of the type in 

parameter, then the expressions returns r which has the same 

reference than o but with a different type: the ReferenceSet. 

 

- oclIsInvalid: Evaluates to true if self is equal to 

OclInvalid. It has the following signature:  

 

oclIsInvalid() : Boolean 

 

The type OclInvalid is an instance of the metatype 

InvalidType present in the OCL metamodel types. It is a 

type that conforms to all other types and it has one single 

instance, identified as invalid. 

 

oclIsInvalid: ObjectDef  Boolean 


 o: ObjectDef instances o.class = InvalidType 

oclIsInvalid o = TRUE 

 o: ObjectDef instances o.class  InvalidType 

oclIsInvalid o = FALSE 

 

The result of OclIsInvalid is TRUE if the instances of 

o.class correspond to the InvalidType, FALSE otherwise. 

 

- oclIsUndefined: Evaluates to true if self is equal to 

invalid or equal to null. It has the following 

signature:  

 

oclIsUndefined() : Boolean 

 

oclIsUndefined: ObjectDef  Boolean 


 o: ObjectDef instances o.class = InvalidType  o = 

NIL 

    oclIsUndefined o = TRUE 

 o: ObjectDef instances o.class  InvalidType  o  

NIL 

    oclIsUndefined o = FALSE 

 

TRUE is obtained when either instances of o.class 

correspond to the InvalidType or the object has a NIL value.  

IV. CONCLUSION AND FUTURE WORK 

This paper has described a formal approach to express 

OCL predefined properties in a clear and rigorous way. 

Based on Z notation, this approach describes first the 

formalization of OCL metamodel types that models the 

conformance notion between different types and then it 

proceeds in expressing formally the predefined properties. 

By this formalism concept, we overcome OCL limitations 

caused by its weak semantic and open rooms for provability 

by the ability to use theorem provers on Z specifications. 
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As future work, we plan to automate the process of 

evaluation and verification of OCL expressions by the means 

of a tool where the formal methodology adopted will work in 

background to preserve the friendly and easy-to-use syntax 

of OCL. 
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