Search results for: dual-cube extensive networks
1712 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.
Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901711 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811710 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11801709 Energy Efficient Cooperative Caching in WSN
Authors: Narottam Chand
Abstract:
Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.Keywords: Cooperative caching, cache replacement, admission control, WSN, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22681708 Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks
Authors: G. R. Rameshkumar, B. V. A Rao, K. P. Ramachandran
Abstract:
Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.Keywords: Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29881707 A Review on Impacts of Grid-Connected PV System on Distribution Networks
Authors: Davud Mostafa Tobnaghi
Abstract:
This paper aims to investigate and emphasize the importance of the grid-connected photovoltaic (PV) systems regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The development of Photovoltaic systems and expansion plans relating to the futuristic in worldwide is elaborated. The most important impacts of grid connected photovoltaic systems on distribution networks as well as the Penetration level of PV system was investigated.Keywords: Grid-connected photovoltaic system, distribution network, penetration levels, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48171706 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game
Authors: Jain-Shing Liu
Abstract:
In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941705 Performance Analysis of Cluster Based Dual Tired Network Model with INTK Security Scheme in a Wireless Sensor Network
Authors: D. Satish Kumar, S. Karthik
Abstract:
A dual tiered network model is designed to overcome the problem of energy alert and fault tolerance. This model minimizes the delay time and overcome failure of links. Performance analysis of the dual tiered network model is studied in this paper where the CA and LS schemes are compared with DEO optimal. We then evaluate the Integrated Network Topological Control and Key Management (INTK) Schemes, which was proposed to add security features of the wireless sensor networks. Clustering efficiency, level of protections, the time complexity is some of the parameters of INTK scheme that were analyzed. We then evaluate the Cluster based Energy Competent n-coverage scheme (CEC n-coverage scheme) to ensure area coverage for wireless sensor networks.
Keywords: CEC n-coverage scheme, Clustering efficiency, Dual tired network, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721704 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks
Authors: S.Ponmalar, S.Sundaravadivelu
Abstract:
Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.
Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451703 H∞ State Estimation of Neural Networks with Discrete and Distributed Delays
Abstract:
In this paper, together with some improved Lyapunov-Krasovskii functional and effective mathematical techniques, several sufficient conditions are derived to guarantee the error system is globally asymptotically stable with H∞ performance, in which both the time-delay and its time variation can be fully considered. In order to get less conservative results of the state estimation condition, zero equalities and reciprocally convex approach are employed. The estimator gain matrix can be obtained in terms of the solution to linear matrix inequalities. A numerical example is provided to illustrate the usefulness and effectiveness of the obtained results.
Keywords: H∞ performance, Neural networks, State estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461702 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27411701 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks
Authors: Daehyoung Kim, Pervez Khan, Hoon Kim
Abstract:
Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.Keywords: Spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751700 Vehicular Ad Hoc Network
Authors: S. Swapna Kumar
Abstract:
A Vehicular Ad-Hoc Network (VANET) is a mobile Ad-Hoc Network that provides connectivity moving device to fixed equipments. Such type of device is equipped with vehicle provides safety for the passengers. In the recent research areas of traffic management there observed the wide scope of design of new methodology of extension of wireless sensor networks and ad-hoc network principal for development of VANET technology. This paper provides the wide research view of the VANET and MANET concept for the researchers to contribute the better optimization technique for the development of effective and fast atomization technique for the large size of data exchange in this complex networks.
Keywords: Ad-Hoc, MANET, Sensors, Security, VANET
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45011699 The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks
Authors: Su Jin Kim, Ji Yeon Cho, Bong Gyou Lee
Abstract:
The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks.Keywords: Ad hoc, energy-aware, multi-path, routing protocol, traffic prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581698 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28421697 Hierarchical Clustering Analysis with SOM Networks
Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy
Abstract:
This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471696 A New Reliability Based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.
Keywords: Base station, channel, GA, Pareto-optimal, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19111695 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction
Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima
Abstract:
This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311694 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.
Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11271693 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19071692 A Comparison of Different Soft Computing Models for Credit Scoring
Authors: Nnamdi I. Nwulu, Shola G. Oroja
Abstract:
It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291691 Contention Window Adjustment in IEEE 802.11-Based Industrial Wireless Networks
Authors: Mohsen Maadani, Seyed Ahmad Motamedi
Abstract:
The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. In this paper, an adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.Keywords: Average Delay, Contention Window, Distributed Coordination Function (DCF), Jitter, Industrial Wireless Network (IWN), Maximum Delay, Reliability, Retry Limit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20351690 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains
Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi
Abstract:
Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141689 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit
Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez
Abstract:
Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.
Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35751688 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries
Authors: W. Mughees, M. Al-Ahmad, M. Naeem
Abstract:
This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.
Keywords: Minimization, Water Pinch, Water Management, Pollution Prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39331687 VoIP Networks Performance Analysis with Encryption Systems
Authors: Edward Paul Guillen, Diego Alejandro Chacon
Abstract:
The VoIP networks as alternative method to traditional PSTN system has been implemented in a wide variety of structures with multiple protocols, codecs, software and hardware–based distributions. The use of cryptographic techniques let the users to have a secure communication, but the calculate throughput as well as the QoS parameters are affected according to the used algorithm. This paper analyzes the VoIP throughput and the QoS parameters with different commercial encryption methods. The measurement–based approach uses lab scenarios to simulate LAN and WAN environments. Security mechanisms such as TLS, SIAX2, SRTP, IPSEC and ZRTP are analyzed with μ-LAW and GSM codecs.Keywords: VoIP, Secure VoIP, Throughput Analysis, VoIP QoS evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28941686 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks
Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari
Abstract:
A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27211685 Survey on Jamming Wireless Networks: Attacks and Prevention Strategies
Authors: S. Raja Ratna, R. Ravi
Abstract:
Wireless networks are built upon the open shared medium which makes easy for attackers to conduct malicious activities. Jamming is one of the most serious security threats to information economy and it must be dealt efficiently. Jammer prevents legitimate data to reach the receiver side and also it seriously degrades the network performance. The objective of this paper is to provide a general overview of jamming in wireless network. It covers relevant works, different jamming techniques, various types of jammers and typical prevention techniques. Challenges associated with comparing several anti-jamming techniques are also highlighted.Keywords: Channel, Cryptography, Frequency, Jamming, Legitimate, Security, Wavelength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31611684 Data Traffic Dynamics and Saturation on a Single Link
Authors: Reginald D. Smith
Abstract:
The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151683 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043