

Abstract—Software maintenance phase is started once a software

project has been developed and delivered. After that, any
modification to it corresponds to maintenance. Software maintenance
involves modifications to keep a software project usable in a changed
or a changing environment, to correct discovered faults, and
modifications, and to improve performance or maintainability.
Software maintenance and management of software maintenance are
recognized as two most important and most expensive processes in a
life of a software product. This research is basing the prediction of
maintenance, on risks and time evaluation, and using them as data
sets for working with neural networks. The aim of this paper is to
provide support to project maintenance managers. They will be able
to pass the issues planned for the next software-service-patch to the
experts, for risk and working time evaluation, and afterward to put all
data to neural networks in order to get software maintenance
prediction. This process will lead to the more accurate prediction of
the working hours needed for the software-service-patch, which will
eventually lead to better planning of budget for the software
maintenance projects.

Keywords—Laboratory information system, maintenance
engineering, neural networks, software maintenance, software
maintenance costs.

I. INTRODUCTION

OFTWARE maintenance plays a more and more important
role in planning and executing new software products.

Therefore any new input which can better describe or propose
a solution for faster and most cost effective resolution of
issues in software maintenance is very useful.

According to ISO/IEC 12207 Software Life Cycle
Processes Standard, the maintenance process is defined as a
primary process in software life cycle [1]. Therefore
evaluation of software maintenance tasks, which is recognized
as the most significant and most costly part of the software life
cycle [2], can significantly contribute to the efficiency of
maintenance management. Those maintenance costs are
commonly regarded as the cost of the software developers in
maintenance because those developers have to be not only
experienced in software development but also to have deep
knowledge about the area of the particular software product.

Vuk Popovic is a Principal Software Engineer in Roche Diagnostics Berlin

and a PhD Student in Faculty of Technical Sciences Novi Sad Serbia,
Department for Computing and Control Engineering (e-mail:
vuk.popovic.vp1@roche.com).

Dunja Popovic is a PhD Student in Faculty of Natural Sciences Novi Sad
Serbia, Department for Biology and Genetics (e-mail:
dunja.popovic@dbe.uns.ac.rs).

Also, software maintenance includes a process of issue
investigation and issue verification and validation which could
be more costly than in usual software development.

Maintainability is mainly influenced by two project factors:
Maintenance task to be performed and people that will
perform the task. Those two factors should always be taken
into consideration [3].

Typical software development life-cycle consists of
following phases: requirement gathering and analysis, design,
implementation (coding), testing, deployment, maintenance.
And it is stated in [4] that only software maintenance costs are
taking between 67 and 80% of the overall software life-cycle
costs. To increase the efficiency of services provided to clients
and to improve the quality of final software product, it is
important to have the knowledge about costs and also a time
estimation of maintenance process. This knowledge is giving
us an opportunity to improve planning activities.

Software maintenance could be defined as any further work
on a software product between the two major software
releases. The diversity of maintenance activities depends not
only on the domain where software is used but also on
software size and frequency of changes [5]. According to
Parikh [2], software maintenance includes understanding and
documenting existing systems, extending existing
functionality, adding new functionality, finding and correcting
bugs, answering questions for users and operations staff,
training new systems staff, rewriting, restructuring, converting
and purging software.

In software solution covered in this paper, there are parts of
it which are used at the customer site for more than a decade.
Therefore the implementation details concerning the initial
development are usually unknown to the developers
responsible for the maintenance of this product. This causes
the estimation of the software-service-patch even more
difficult.

Prediction model, presented in this paper, is based on
Backpropagation Neural Network (BPN). This model is
proposed to make an estimation of the time needed to develop
and deliver one maintenance release of the observed software
solution.

The specific records regarding the implementation, business
risk, and product risk are chosen as the input data of the
prediction model. Important input data are also the original
time estimation (time needed for particular maintenance
according to developers) and the actually spent time in the
past maintenance phase.

Vuk M. Popovic, Dunja D. Popovic

Neural Network Based Approach of Software
Maintenance Prediction for Laboratory Information

System

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:9, 2017

1079International Scholarly and Scientific Research & Innovation 11(9) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
9,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
00

3.
pd

f

The estimation time should always take into consideration
that the quality of software is an important concern because
once solved issue should not be opening another issue. That
means that software should be reliable. Software reliability
could be defined as the probability that the software will work
without failure in a specified environment and for a specified
period of time. There are many approaches which can be
implemented to improve the software reliability, however in
each of those approaches it is important to have knowledge
about development time and planed budget for improving the
software reliability.

Parts of software that require maintenance need to be
delivered in proposed time and with high-quality. Quality is
achieved if the repeated maintenance of the same software part
is avoided. For a high-quality software system in the medical
branch, complicated as the one observed, maintenance can be
costly and therefore all possible estimation techniques should
be taken into consideration, including the one presented in this
paper.

 The rest of the paper is structured as follows. The second
section provides background on data used in the paper. Data
are based on real data from company internal repository of
maintenance requests. The third section covers the
methodology describing the neural networks. The fourth
section presents the case study. The last section contains
conclusions and some remarks for further research.

II. USED DATA

A. Idea of Data Usage

Prediction of maintenance, presented in this paper, is based
on the data set which is composed from risk evaluation and
time evaluation variables.

Every issue in maintenance phase has its measurable
parameters and those are complexity, business and product
risk. Idea is to make prediction based on these parameters,
which will predict the time to resolve the issue. Classification
of tasks complexity can be based on structural measures
(number of code lines, the number of procedures, the number
of modules) or on a subjective assessment of software experts.
In observed software product the complexity is calculated
mostly on the base of subjective assessment of software
experts. Only in a small number of cases, the first assessment
is adjusted after the extraction of (above mentioned) technical
data. The complexity of maintenance tasks is influenced by
many factors from human behavior domain (personal
characteristics, knowledge, and experience) and technical
domain (maintainability). Also, the complexity of
maintenance tasks influences the company internal
organization and the efficiency of services provided to the
clients. If those are well organized it brings the benefits for
both, software organization and its clients. In observed case,
there is a new team of developers formed exactly to fulfill
issue fixing tasks. This approach simplifies the software
maintenance estimation and estimation of the software
maintenance costs because the same pool of developers is
always available for evaluation and resolving the issues in the

specific parts of the maintenance.
Other variables are three different types of risk evaluation,

for every issue in the maintenance phase. Those are product
risk, business risk, and implementation risk. Each of those
risks is evaluated by the dedicated engineers for the field of
risk. Each of these risks can have one of the possible values:
low, medium, or high. In this paper, low respond to value 1,
medium to value 2 and high is represented by a value 3. All
those data are prepared for a training of the neural networks
and extracted from the known data of old issues, which are
implemented in previous software service patches.

In general, the life-cycle of software maintenance includes a
requirements phase, investigation phase, implementation
phase, test phase, installation and checkout phase. The
maintenance phase is defined as the process of modifying a
software system or component, after delivery, to correct faults,
improve the performance or other attributes, or adapt to a
changing environment [4]. All named parts of the life-cycle
are also taken into consideration. Apart from evaluated risks,
there is also a number of planned and a number of actually
used implementation time, which is taken into account. This
implementation time is based on the expertise of the software
development engineers who give the prognosis how much
time each issue can take. It is one of the key variables used in
research. The output of neural networks is also
implementation time – only this time it is predicted
implementation time.

 With all this information we are trying to provide the
conclusion which will lead the decisions regarding the length
of a time needed for a software maintenance period, so called
software-service-patch, in future. Also, this information will
hopefully lead to better adjustment of the planned working
hours, implementation time, with the actually used ones.

B. Construction of Data

In this case, there is a repository of various maintenance
tasks conducted by a company, and it is possible to extract
some information from historical data. Data are extracted from
the company maintenance repository which includes all
maintenance issues raised by customers or test engineers. It
was done with JIRA software ticketing system and GIT code
repository [5]-[7]. In this case, the construction of dataset is
done with the amount of data which accords to 6 months of
software maintenance work.

Maintenance covered with used dataset was delivered by a
new established team whose only task was to take care of
software product maintenance. This establishing was the
initial idea of this paper because among other conclusions it
should be proven that establishing such a department in one
software company is of importance for the organization. It is
stated that many software organizations failed to define and
establish procedures for software maintenance activities,
because they are missing the maintenance process
management models [8]. As a consequence, there is an evident
crisis of management and lack of planning in software
maintenance [9].

Software development and maintenance activities are

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:9, 2017

1080International Scholarly and Scientific Research & Innovation 11(9) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
9,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
00

3.
pd

f

organized in the way that one or more programmers are
assigned to each software application, or to each part of the
software product. Once a maintenance request (MR) is
received from a client, it is forwarded to a selected
programmer from a set of assigned programmers in the
product care team. Each request may be solved by one
programmer, or by a set of programmers assigned to a
software application. In this case, as already stated, there is a
team of developers who are all experts in their areas. Also
apart from one expert developer in each programming
language that is used in the observed software, there is also
one software testing engineer.

III. METHODOLOGY

In this paper, the Artificial Neural Networks methodology
is used to predict the software maintenance. Artificial Neural
Networks are mathematical models which are derived from
examinations of the human brain system, and based on the
human brain processes. Those networks have the capability to
learn complex and nonlinear behavior for given data set, and
that is why are they an excellent choice for modeling a
software maintenance prediction model.

ANN (Artificial Neural Networks) has been commonly
used in engineering (such as [10]-[12]). ANN prediction
approach has also been used in software prediction models, for
predicting software reliability [13]-[16]. They are widely used
due to relative simplicity, together with its universal
approximation capacity [17].

Neural networks used in this research are standard BPNs,
and their architecture is composed of one input layer, one
hidden layer and one output layer. Backpropagation networks
are the most widely used neural network, and they are based
on the backpropagation algorithm. Backpropagation is
calculating the error contribution of each neuron after
processing a batch of data. In this process each neuron is able
to individually introduce the corrections. It is done by
changing the values of the weight coefficients on all its inputs,
and this change is based on a set error value. The weight of
each synapse is connecting a series of tuning neurons and an
iterative process to achieve proper tuning (training data) is
conducted. In each iteration there is additional fine tuning,
conducted with the back-propagation algorithm, to adjust to
the desired level. Eventually the network is tuned and when it
is used for prediction it will predict with an acceptably low
error rates. Also the selected ANN is further composed of two
neurons in the input layer, 8 neurons in the hidden layer, and
one neuron in the output layer. The ANN model is developed
using the functionality of the MATLAB Neural Network
Toolbox [18]. The used training function is the MATLAB
trainlm function, because it is generally the fastest training
function in MATLAB software package. Backpropagation
algorithm of the function used for network training is based on
Levenberg-Marquardt approximation. This function, as a
network training function, actually updates weight and bias
values according to Levenberg-Marquardt optimization. The
performance function for used backpropagation networks is
mean square error function. It is the average squared error

between the network outputs and the target outputs.
Afterwards, the model performance is evaluated and verified
with the test datasets. In this process is also evaluated the
performance of network by adjusting the numbers of neurons
and hidden layers. Once the ANN prediction models are
trained to a satisfactory level, and error rates are acceptable,
they are used for prediction on other data.

A. Model

There are several possible prediction models, regarding the
input data which will be used. The model used in this paper is
shown in Fig. 1.

Fig. 1 Preview of used model

Big amount of data, from the constructed dataset, is
composing the input for the used model. That is why the idea
was to split the main model and to make four separate sub-
models. Each of those sub-models has a specific part of input
data, which is tailored regarding the maintenance service
patch. We took four service patches into consideration with
following names 2.16.3, 2.17.6, 2.18.1 and 2.18.2. Each sub-
model has unique data input from particular software service-
patch. Also, each sub-model has an own neural network and
output. For each of that sub-models calculation is done
separately. Afterwards, all output results, described in next
chapter, from all sub-models are making an output (prediction)
of the main model.

IV. RESULTS

Data from each service patch are used for training the
networks. As stated in this case, one service patch responds to
one network of one sub-model.

In the trained networks we inputted the data of the service
patch (so called future service patch) for which we wanted to
make a prediction. Each network gave an output result for this
future specific service patch. Those results are listed in Tables
I and II, and also visually presented in Figs. 3-8. All network
outputs for each service patch along with actually spent time
for all service patches are presented. It can be clearly seen
how the prediction varies for each service patch. Those
variations could be explained by numerous factors such as a
number of input data, the accuracy of engineer valuation, or
actual complexity of an issue.

The results shown in Tables I and II are presenting the
results from executed prediction. These results are after the
service patch was done, compared with the actually spent
time.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:9, 2017

1081International Scholarly and Scientific Research & Innovation 11(9) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
9,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
00

3.
pd

f

Fig. 2 Preview of used sub-model

TABLE I
RESULT OF PREDICTION FOR EACH SERVICE PATCH

Time
spent

Output
2.16.3

Output
2.17.6

Output
2.18.1

Output
2.18.2

30 555 2266 276,05 345,64

1410 555 2266 291,44 376,63

180 1080 2266 291,94 292,74

2580 1080 2266 291,44 328,42

45 555,02 2266 275,67 292,74

45 555 2266 276,37 376,63

1500 1080 2266 291,44 376,63

165 555 2266 276,37 376,63

165 555 2266 276,37 376,63

30 555,49 2266 321,84 376,63

TABLE II

RESULT OF PREDICTION FOR EACH SERVICE PATCH
Time
spent

Output
2.16.3

Output
2.17.6

Output
2.18.1

Output
2.18.2

300 555 2266 276,05 345,64

120 555 2266 276,05 345,64

480 555 2266 276,36 328,42

2700 1080 2266 291,44 328,42

690 555 2266 2914,3 345,64

TABLE III

RESULT OF PREDICTION - ADJUSTED RESULTS

Actually spent time Prediction - best fitting Prediction - average

30 276,05 489,17

1410 2266 500,77

180 291,94 611,17

2580 2266 724,96

45 275,67 520,86

45 276,37 519,5

1500 1080 632,02

165 276,37 497

165 276,37 497

30 321,84 638,49

300 276,05 658,17

120 276,05 516,67

480 555 484,94

2700 2266 619,96

690 555 1148,735

The comparison is done in two ways. The first one, also
shown in Fig. 7, is done using the calculation of the average
value from all sub-model outputs with appropriate MATLAB
functionality [17].

The other calculation is done with overlapping the diagrams
of predicted data and actual achieved data and taking the best
fitting results from predicted data into consideration. After this
comparison the result got from neural network prediction
could be better compared with the actually achieved results.

Fig. 3 Network output for service patch 2.16.3

Fig. 4 Network output for service patch 2.17.6

V. CONCLUSION

This paper is based on research made in one of the world
biggest medical diagnostic company. Data used in this
publication represent research on maintenance of one of the

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
2.16.3 output

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
2.17.6 outputs

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:9, 2017

1082International Scholarly and Scientific Research & Innovation 11(9) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
9,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
00

3.
pd

f

most used laboratory software in Europe. Therefore
conclusions found in this paper may serve as guidance to other
colleagues who are dealing with the same issues regarding the
efficient software maintenance.

Fig. 5 Network output for service patch 2.18.1

Fig. 6 Network output for service patch 2.18.2

Fig. 7 Network prediction for the average predicted results

Fig. 8 Network prediction for best fitted results

Systems based on the neural networks have been already

used in different fields for making decisions, controlling

systems or forecasting. According to the results of data
analysis presented in this paper, maintenance prediction based
on neural network provides easy to use and also reliable
approach for evaluating the maintenance processes. These
approaches of maintenance prediction defintely deserve more
attention in planning maintenance activities.

Many promising directions for further work exist. The first
direction is related to the inclusion of more real data about
software complexity (number of code lines, a number of
modules) and about maintenance staff skills (experience,
familiarity with software products and familiarity with
technologies) in the analysis. Also, one direction is related to
the comparison of this approach with other commonly used AI
approaches (genetics algorithm, fuzzy logic) on the same data
sets. And finally, one direction could be the modification of
the presented approach through the introduction of modern
neural networks based techniques such as Theano, Keras or
Tensorflow and comparison of results with this approach.

REFERENCES
[1] R. Singh, “International Standard ISO/IEC 12207 Software Life Cycle

Processes”, Software Process: Improvement and Practice, vol. 2, 1996.
[2] G. Parikh, “Exploring the world of software maintenance: what is

software maintenance?”, ACM SIGSOFT Software Engineering Notes,
vol. 11, 1986.

[3] A. April, J. H. Hayes and A. Abran, “Software Maintenance Maturity
Model (SMmm): the software maintenance process model”, Journal of
Software Maintenance: Research and Practice, vol. 17, issue 3, 2005.

[4] Cycle Processes”, Software Process: Improvement and Practice, vol. 2,
1996.

[5] Patrick Li, “JIRA 7 Essentials”, Packt Publishing Ltd, Apr 2015
[6] Matthew Doar, “Practical JIRA Administration”, O'Reilly Media, Inc.,

May 2011
[7] Ravi Sagar, “Mastering JIRA”, Packt Publishing Ltd, May 2015
[8] F. J. Pino, F. Ruiz, F. García and M. Piattini, “A software maintenance

methodology for small organizations: Agile_MANTEMA”, Journal of
Software: Evolution and Process, vol. 24, 2012.

[9] A. April and A. Abran, “A Software Maintenance Maturity Model
(S3M): Measurement Practices at Maturity Levels 3 and 4”, Electronic
Notes in Theoretical Computer Science, Volume 233, 27 March 2009.

[10] K. Xu, M. Xie, LC. Tang, SL. Ho, “Application of neural network in
forecasting engine systems reliability”, Applied Soft Computing, vol. 2,
2003.

[11] P.S. Rajpal, K.S. Shishodia, G.S. Sekhon, “An artificial neural network
for modeling reliability, availability and maintainability of a repairable
system”, Reliability Engineering and System Safety, vol. 91, 2006.

[12] Y. Takada, K. Matsumoto and K. Torii, “A softwarereliability prediction
model using a neural-network”, Systems Comput Japan., vol. 25, 1994.

[13] T.M. Khoshgoftaar and R.M. Szabo, “Using neural networks to predict
software faults during testing”, IEEE Trans Reliab., vol. 45, 1996.

[14] K.Y. Cai, L. Cai, W.D. Wang, Z.Y. Yu and D. Zhang, “On the neural
network approach in software reliability modeling”, J Systems Software,
vol. 58, 2001.

[15] L. Tian and A. Noore, Evolutionary neural network modeling for
software cumulative failure time prediction”, Reliab Eng Syst Saf., vol.
87, 2005.

[16] D. Srinivasan, Neurocomputing, vol. 23, 1998.
[17] M. H. Beale, M. T. Hagan, H. B. Demuth, “MATLAB Neural Network

Toolbox User’s Guide”, The MathWorks, Inc. , 2004
[18] PerOlof Bengtsson and Jan Bosch, Architecture Level Prediction of

Software Maintenance, 1999

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
2.18.1 outputs

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
2.18.2 outputs

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
prediction

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 101112131415

Actually spent
time

Network
prediction

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:9, 2017

1083International Scholarly and Scientific Research & Innovation 11(9) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
9,

 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
00

3.
pd

f

