
 

 

 
Abstract—Software maintenance phase is started once a software 

project has been developed and delivered. After that, any 
modification to it corresponds to maintenance. Software maintenance 
involves modifications to keep a software project usable in a changed 
or a changing environment, to correct discovered faults, and 
modifications, and to improve performance or maintainability. 
Software maintenance and management of software maintenance are 
recognized as two most important and most expensive processes in a 
life of a software product. This research is basing the prediction of 
maintenance, on risks and time evaluation, and using them as data 
sets for working with neural networks. The aim of this paper is to 
provide support to project maintenance managers. They will be able 
to pass the issues planned for the next software-service-patch to the 
experts, for risk and working time evaluation, and afterward to put all 
data to neural networks in order to get software maintenance 
prediction. This process will lead to the more accurate prediction of 
the working hours needed for the software-service-patch, which will 
eventually lead to better planning of budget for the software 
maintenance projects.  
 

Keywords—Laboratory information system, maintenance 
engineering, neural networks, software maintenance, software 
maintenance costs. 

I. INTRODUCTION 

OFTWARE maintenance plays a more and more important 
role in planning and executing new software products. 

Therefore any new input which can better describe or propose 
a solution for faster and most cost effective resolution of 
issues in software maintenance is very useful.  

According to ISO/IEC 12207 Software Life Cycle 
Processes Standard, the maintenance process is defined as a 
primary process in software life cycle [1]. Therefore 
evaluation of software maintenance tasks, which is recognized 
as the most significant and most costly part of the software life 
cycle [2], can significantly contribute to the efficiency of 
maintenance management. Those maintenance costs are 
commonly regarded as the cost of the software developers in 
maintenance because those developers have to be not only 
experienced in software development but also to have deep 
knowledge about the area of the particular software product. 
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Also, software maintenance includes a process of issue 
investigation and issue verification and validation which could 
be more costly than in usual software development.  

Maintainability is mainly influenced by two project factors: 
Maintenance task to be performed and people that will 
perform the task. Those two factors should always be taken 
into consideration [3].  

Typical software development life-cycle consists of 
following phases: requirement gathering and analysis, design, 
implementation (coding), testing, deployment, maintenance. 
And it is stated in [4] that only software maintenance costs are 
taking between 67 and 80% of the overall software life-cycle 
costs. To increase the efficiency of services provided to clients 
and to improve the quality of final software product, it is 
important to have the knowledge about costs and also a time 
estimation of maintenance process. This knowledge is giving 
us an opportunity to improve planning activities. 

Software maintenance could be defined as any further work 
on a software product between the two major software 
releases. The diversity of maintenance activities depends not 
only on the domain where software is used but also on 
software size and frequency of changes [5]. According to 
Parikh [2], software maintenance includes understanding and 
documenting existing systems, extending existing 
functionality, adding new functionality, finding and correcting 
bugs, answering questions for users and operations staff, 
training new systems staff, rewriting, restructuring, converting 
and purging software.  

In software solution covered in this paper, there are parts of 
it which are used at the customer site for more than a decade. 
Therefore the implementation details concerning the initial 
development are usually unknown to the developers 
responsible for the maintenance of this product. This causes 
the estimation of the software-service-patch even more 
difficult.  

Prediction model, presented in this paper, is based on 
Backpropagation Neural Network (BPN). This model is 
proposed to make an estimation of the time needed to develop 
and deliver one maintenance release of the observed software 
solution.  

The specific records regarding the implementation, business 
risk, and product risk are chosen as the input data of the 
prediction model. Important input data are also the original 
time estimation (time needed for particular maintenance 
according to developers) and the actually spent time in the 
past maintenance phase.  
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The estimation time should always take into consideration 
that the quality of software is an important concern because 
once solved issue should not be opening another issue. That 
means that software should be reliable. Software reliability 
could be defined as the probability that the software will work 
without failure in a specified environment and for a specified 
period of time. There are many approaches which can be 
implemented to improve the software reliability, however in 
each of those approaches it is important to have knowledge 
about development time and planed budget for improving the 
software reliability. 

Parts of software that require maintenance need to be 
delivered in proposed time and with high-quality. Quality is 
achieved if the repeated maintenance of the same software part 
is avoided. For a high-quality software system in the medical 
branch, complicated as the one observed, maintenance can be 
costly and therefore all possible estimation techniques should 
be taken into consideration, including the one presented in this 
paper. 

 The rest of the paper is structured as follows. The second 
section provides background on data used in the paper. Data 
are based on real data from company internal repository of 
maintenance requests. The third section covers the 
methodology describing the neural networks. The fourth 
section presents the case study. The last section contains 
conclusions and some remarks for further research.  

II. USED DATA 

A. Idea of Data Usage 

Prediction of maintenance, presented in this paper, is based 
on the data set which is composed from risk evaluation and 
time evaluation variables. 

Every issue in maintenance phase has its measurable 
parameters and those are complexity, business and product 
risk. Idea is to make prediction based on these parameters, 
which will predict the time to resolve the issue. Classification 
of tasks complexity can be based on structural measures 
(number of code lines, the number of procedures, the number 
of modules) or on a subjective assessment of software experts. 
In observed software product the complexity is calculated 
mostly on the base of subjective assessment of software 
experts. Only in a small number of cases, the first assessment 
is adjusted after the extraction of (above mentioned) technical 
data. The complexity of maintenance tasks is influenced by 
many factors from human behavior domain (personal 
characteristics, knowledge, and experience) and technical 
domain (maintainability). Also, the complexity of 
maintenance tasks influences the company internal 
organization and the efficiency of services provided to the 
clients. If those are well organized it brings the benefits for 
both, software organization and its clients. In observed case, 
there is a new team of developers formed exactly to fulfill 
issue fixing tasks. This approach simplifies the software 
maintenance estimation and estimation of the software 
maintenance costs because the same pool of developers is 
always available for evaluation and resolving the issues in the 

specific parts of the maintenance.  
Other variables are three different types of risk evaluation, 

for every issue in the maintenance phase. Those are product 
risk, business risk, and implementation risk. Each of those 
risks is evaluated by the dedicated engineers for the field of 
risk. Each of these risks can have one of the possible values: 
low, medium, or high. In this paper, low respond to value 1, 
medium to value 2 and high is represented by a value 3. All 
those data are prepared for a training of the neural networks 
and extracted from the known data of old issues, which are 
implemented in previous software service patches.  

In general, the life-cycle of software maintenance includes a 
requirements phase, investigation phase, implementation 
phase, test phase, installation and checkout phase. The 
maintenance phase is defined as the process of modifying a 
software system or component, after delivery, to correct faults, 
improve the performance or other attributes, or adapt to a 
changing environment [4]. All named parts of the life-cycle 
are also taken into consideration. Apart from evaluated risks, 
there is also a number of planned and a number of actually 
used implementation time, which is taken into account. This 
implementation time is based on the expertise of the software 
development engineers who give the prognosis how much 
time each issue can take. It is one of the key variables used in 
research. The output of neural networks is also 
implementation time – only this time it is predicted 
implementation time.  

 With all this information we are trying to provide the 
conclusion which will lead the decisions regarding the length 
of a time needed for a software maintenance period, so called 
software-service-patch, in future. Also, this information will 
hopefully lead to better adjustment of the planned working 
hours, implementation time, with the actually used ones. 

B. Construction of Data 

In this case, there is a repository of various maintenance 
tasks conducted by a company, and it is possible to extract 
some information from historical data. Data are extracted from 
the company maintenance repository which includes all 
maintenance issues raised by customers or test engineers. It 
was done with JIRA software ticketing system and GIT code 
repository [5]-[7]. In this case, the construction of dataset is 
done with the amount of data which accords to 6 months of 
software maintenance work.  

Maintenance covered with used dataset was delivered by a 
new established team whose only task was to take care of 
software product maintenance. This establishing was the 
initial idea of this paper because among other conclusions it 
should be proven that establishing such a department in one 
software company is of importance for the organization. It is 
stated that many software organizations failed to define and 
establish procedures for software maintenance activities, 
because they are missing the maintenance process 
management models [8]. As a consequence, there is an evident 
crisis of management and lack of planning in software 
maintenance [9]. 

Software development and maintenance activities are 
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organized in the way that one or more programmers are 
assigned to each software application, or to each part of the 
software product. Once a maintenance request (MR) is 
received from a client, it is forwarded to a selected 
programmer from a set of assigned programmers in the 
product care team. Each request may be solved by one 
programmer, or by a set of programmers assigned to a 
software application. In this case, as already stated, there is a 
team of developers who are all experts in their areas. Also 
apart from one expert developer in each programming 
language that is used in the observed software, there is also 
one software testing engineer.  

III. METHODOLOGY 

In this paper, the Artificial Neural Networks methodology 
is used to predict the software maintenance. Artificial Neural 
Networks are mathematical models which are derived from 
examinations of the human brain system, and based on the 
human brain processes. Those networks have the capability to 
learn complex and nonlinear behavior for given data set, and 
that is why are they an excellent choice for modeling a 
software maintenance prediction model. 

ANN (Artificial Neural Networks) has been commonly 
used in engineering (such as [10]-[12]). ANN prediction 
approach has also been used in software prediction models, for 
predicting software reliability [13]-[16]. They are widely used 
due to relative simplicity, together with its universal 
approximation capacity [17].  

Neural networks used in this research are standard BPNs, 
and their architecture is composed of one input layer, one 
hidden layer and one output layer. Backpropagation networks 
are the most widely used neural network, and they are based 
on the backpropagation algorithm. Backpropagation is 
calculating the error contribution of each neuron after 
processing a batch of data. In this process each neuron is able 
to individually introduce the corrections. It is done by 
changing the values of the weight coefficients on all its inputs, 
and this change is based on a set error value. The weight of 
each synapse is connecting a series of tuning neurons and an 
iterative process to achieve proper tuning (training data) is 
conducted. In each iteration there is additional fine tuning, 
conducted with the back-propagation algorithm, to adjust to 
the desired level. Eventually the network is tuned and when it 
is used for prediction it will predict with an acceptably low 
error rates. Also the selected ANN is further composed of two 
neurons in the input layer, 8 neurons in the hidden layer, and 
one neuron in the output layer. The ANN model is developed 
using the functionality of the MATLAB Neural Network 
Toolbox [18]. The used training function is the MATLAB 
trainlm function, because it is generally the fastest training 
function in MATLAB software package. Backpropagation 
algorithm of the function used for network training is based on 
Levenberg-Marquardt approximation. This function, as a 
network training function, actually updates weight and bias 
values according to Levenberg-Marquardt optimization. The 
performance function for used backpropagation networks is 
mean square error function. It is the average squared error 

between the network outputs and the target outputs. 
Afterwards, the model performance is evaluated and verified 
with the test datasets. In this process is also evaluated the 
performance of network by adjusting the numbers of neurons 
and hidden layers. Once the ANN prediction models are 
trained to a satisfactory level, and error rates are acceptable, 
they are used for prediction on other data.  

A. Model 

There are several possible prediction models, regarding the 
input data which will be used. The model used in this paper is 
shown in Fig. 1.  

 

 

Fig. 1 Preview of used model  
 

Big amount of data, from the constructed dataset, is 
composing the input for the used model. That is why the idea 
was to split the main model and to make four separate sub-
models. Each of those sub-models has a specific part of input 
data, which is tailored regarding the maintenance service 
patch. We took four service patches into consideration with 
following names 2.16.3, 2.17.6, 2.18.1 and 2.18.2. Each sub-
model has unique data input from particular software service-
patch. Also, each sub-model has an own neural network and 
output. For each of that sub-models calculation is done 
separately. Afterwards, all output results, described in next 
chapter, from all sub-models are making an output (prediction) 
of the main model. 

IV. RESULTS 

Data from each service patch are used for training the 
networks. As stated in this case, one service patch responds to 
one network of one sub-model.  

In the trained networks we inputted the data of the service 
patch (so called future service patch) for which we wanted to 
make a prediction. Each network gave an output result for this 
future specific service patch. Those results are listed in Tables 
I and II, and also visually presented in Figs. 3-8. All network 
outputs for each service patch along with actually spent time 
for all service patches are presented. It can be clearly seen 
how the prediction varies for each service patch. Those 
variations could be explained by numerous factors such as a 
number of input data, the accuracy of engineer valuation, or 
actual complexity of an issue.  

The results shown in Tables I and II are presenting the 
results from executed prediction. These results are after the 
service patch was done, compared with the actually spent 
time.  
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Fig. 2 Preview of used sub-model  
 

TABLE I 
RESULT OF PREDICTION FOR EACH SERVICE PATCH 

Time 
spent 

Output 
2.16.3 

Output 
2.17.6 

Output 
2.18.1 

Output 
2.18.2 

30 555 2266 276,05 345,64 

1410 555 2266 291,44 376,63 

180 1080 2266 291,94 292,74 

2580 1080 2266 291,44 328,42 

45 555,02 2266 275,67 292,74 

45 555 2266 276,37 376,63 

1500 1080 2266 291,44 376,63 

165 555 2266 276,37 376,63 

165 555 2266 276,37 376,63 

30 555,49 2266 321,84 376,63 

 
TABLE II 

RESULT OF PREDICTION FOR EACH SERVICE PATCH 
Time 
spent 

Output 
2.16.3 

Output 
2.17.6 

Output 
2.18.1 

Output 
2.18.2 

300 555 2266 276,05 345,64 

120 555 2266 276,05 345,64 

480 555 2266 276,36 328,42 

2700 1080 2266 291,44 328,42 

690 555 2266 2914,3 345,64 

 
TABLE III 

RESULT OF PREDICTION - ADJUSTED RESULTS 

Actually spent time Prediction - best fitting Prediction - average 

30 276,05 489,17 

1410 2266 500,77 

180 291,94 611,17 

2580 2266 724,96 

45 275,67 520,86 

45 276,37 519,5 

1500 1080 632,02 

165 276,37 497 

165 276,37 497 

30 321,84 638,49 

300 276,05 658,17 

120 276,05 516,67 

480 555 484,94 

2700 2266 619,96 

690 555 1148,735 

 

The comparison is done in two ways. The first one, also 
shown in Fig. 7, is done using the calculation of the average 
value from all sub-model outputs with appropriate MATLAB 
functionality [17].  

The other calculation is done with overlapping the diagrams 
of predicted data and actual achieved data and taking the best 
fitting results from predicted data into consideration. After this 
comparison the result got from neural network prediction 
could be better compared with the actually achieved results.  

 

 

Fig. 3 Network output for service patch 2.16.3 
 

 

Fig. 4 Network output for service patch 2.17.6 

V. CONCLUSION 

This paper is based on research made in one of the world 
biggest medical diagnostic company. Data used in this 
publication represent research on maintenance of one of the 
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most used laboratory software in Europe. Therefore 
conclusions found in this paper may serve as guidance to other 
colleagues who are dealing with the same issues regarding the 
efficient software maintenance.  

 

 

Fig. 5 Network output for service patch 2.18.1 
 

 

Fig. 6 Network output for service patch 2.18.2 
 

 

Fig. 7 Network prediction for the average predicted results 
 

 

Fig. 8 Network prediction for best fitted results 
 
Systems based on the neural networks have been already 

used in different fields for making decisions, controlling 

systems or forecasting. According to the results of data 
analysis presented in this paper, maintenance prediction based 
on neural network provides easy to use and also reliable 
approach for evaluating the maintenance processes. These 
approaches of maintenance prediction defintely deserve more 
attention in planning maintenance activities.  

Many promising directions for further work exist. The first 
direction is related to the inclusion of more real data about 
software complexity (number of code lines, a number of 
modules) and about maintenance staff skills (experience, 
familiarity with software products and familiarity with 
technologies) in the analysis. Also, one direction is related to 
the comparison of this approach with other commonly used AI 
approaches (genetics algorithm, fuzzy logic) on the same data 
sets. And finally, one direction could be the modification of 
the presented approach through the introduction of modern 
neural networks based techniques such as Theano, Keras or 
Tensorflow and comparison of results with this approach. 
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