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H, State Estimation of Neural Networks with
Discrete and Distributed Delays

Biao Qin, Jin Huang

Abstract—In  this paper, together with some improved
Lyapunov-Krasovskii ~ functional and effective mathematical
techniques, several sufficient conditions are derived to guarantee the
error system is globally asymptotically stable with Heo
performance, in which both the time-delay and its time variation
can be fully considered. In order to get less conservative results of
the state estimation condition, zero equalities and reciprocally
convex approach are employed. The estimator gain matrix can be
obtained in terms of the solution to linear matrix inequalities. A
numerical example is provided to illustrate the usefulness and
effectiveness of the obtained results.
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[. INTRODUCTION

N recent years, neural networks have been extensively

studied due to its wide application in various areas such
as associative memories [1], smart antenna arrays [2], pattern
recognition [3], and so on, these applications greatly depend
on the dynamic behaviors of the underlying neural networks,
therefore, great efforts have been made to analyze the
dynamics on NNs and many elegant results have been
reported (see e.g.,[4]-[5] and the references therein). In
reality, time-delays are frequently encountered in various
engineering and scientific fields, time delay, which may
results in complex dynamic behaviors, often occurs in neural
networks, so, the main focus of attention is on the stability
analysis of neural networks with delays and many interesting
results have been proposed [7]-[18].

In general, while signal propagation is sometimes
instantaneous and can be modeled with discrete delays, it
may also be distributed during a certain time period so that
distributed delays are incorporated into the model [19], on
the other hand, a neural network is a highly interconnected
network with a large number of neurons, as a result, most
neural networks are large-scale and complex networks. In
fact, only partial information about the neuron states is
available in the network outputs of large-scale neural
networks. Therefore, it is important to estimate the neuron
states through available measurement outputs, and there are
many remarkable attempt to design the state estimator for
various types of neural network [19]-[31]. The authors in
[19] discussed the problem of H, state estimator for a class
of neural networks with mixed time-varying delay. In [20]
Lakshmanan investigated the estimation problem for neural
networks with leakage, discrete and distributed delays.
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Further, the state estimation problem for fuzzy -cellular
neural networks with time delays in leakage term, discrete
and unbounded distributed delays is deeply reported in [25].
Moreover, in literature [30], the existence, uniqueness and
stability analysis of recurrent neural networks with time
delays and leakage term under impulsive perturbations has
been investigated. However, some integrals that appeared in
the derivative of Lyapunov functional are over bounded, and
this leads to conservative results. For example,
— [, €T(s)Re(s)ds is enlarged as — ftt_d(t) el (s)Re(s)ds,

the term — tt:dd(t) el'(s)Re(s)ds is omitted. And, it should
be pointed out that under the precondition that the
time-derivative of the delay smaller than 1 due to the term
fir(t) eT(s)Qe(s)ds was always chosen in the
Lyapunov-Krasovaii functional, the derivation is always
positive when 7(t) < 1, which is contrary to our ultimate
goal V(t,e;) < 0. So, removing the above conservation
limitations has become urgently necessary.

Based on the above discussions, the H,, state estimator
problem for a class of neural networks with discrete and
distributed delays is considered in this paper. By using a new
analysis method based on the lower and upper bound of the
time delay and a appropriate Lyapunov-Krasovaii functional
with triple integral terms, introducing free-weighting
matrices and using reciprocally convex approach, several
stability criteria for neural networks with mixed time-varying
delays are derived in terms of LMIs. A numerical example is
given to illustrate the effectiveness and less conservation of
the proposed method.

Notations: Throughout this paper, the superscripts  — 1/
and "7’ stand for the inverse and transpose of a matrix,
respectively; P > 0, (P > 0,P < 0, P < 0) means that the
matrix P is symmetric positive definite(positive-semi
definite, negative definite and negative-semi definite); R"
denotes n-dimensional Euclidean space; R™*™ is the set of
m X n real matrices; [ denotes the identity matrix with
appropriate dimensions; * denotes the symmetric block in
symmetric matrix; Lo denotes the space of square integrable
vector functions on [0,00) with norm

I 1F=(fg™ I 112ty 2.
II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following neural networks with mixed time-
varying delays:

() = —Cx(t) + Big(x(t)) + Bag(x(t — h(t))
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t

+ W ( )g(x(s))ds+J+F1w(t),
t—d(t
y(t) = Dx(t) + Ex(t — h(t)) + Fow(t),
2(t) = Ha(t),
xz(s) = p(s), Vsel-71,0], 7=mazx{h,d} (1)

where x(t) = [x1(t),22(t),...,2,(t)]7 € R™ is the state
vector of the neural network with n neurons, y(t) € R™ is
the network output measurement, z(t) € RP to be estimated
is a linear combination of the state, w(t) € RY is a noise
input belonging to £3[0,00), C' = diag{ci,ca,...,c,} is a
diagonal matrix with positive entries ¢; > 0, D, E, Fy, F;
and H are real known constant matrices with appropriate
dimensions, the matrices B;, By and W are connection
weight matrix, discrete connection weight matrix and

distributed ~ connection = weight matrix, respectively,
9(@(t)) = [g1(1(t)), g2(22(t)), - .., gn (2 (t))]" denotes the
neuron activation function, J = [J1,J2,...,J,]T is an

external input vector, ¢(s) is the initial condition on
s € [=7,0], h(t) and d(t) is the discrete time-varying delays
and distributed time-varying delays, respectively. Satisfying
0<h(t)<h, h(t)<p, 0<d(t)<d, 2)
where h, ;1 and d are constants scalars.

Assumption 1. The neuron activation function g(-)
continuous and bounded, and there exist constants p;, and
pi such that

gi(a) — gi(b) < F

p;g 7p1‘a 221727 N (3)
a—b '
where a, b € R, a # b.
Here, we denote
p* =diagip{.....pt}, p~ =diagipy,....py},

maz{lpy] e [} @)

Remark 1. It is seen from Assumption 1 that p; and p;r
can be positive, negative or zero. when p; = 0 and p; > 0,
Assumption 1 describes the monotone nondecreasing
activation. Moreover, monotone increasing activation
functions can be described when 0 < p;” < pj".

p = diag{maz{|p{], |py [}..

We consider the following state estimator for the neural
networks:

&(t) = —C&(t) + Big(&(1)) + Bag((t — h(1)))

t

+ W ) g(z(s))ds + J + K(y — 9),
9(t) = Dz(t) + Ex(t — h(t)),
2(t) = Hi(t),
£(0) = ¢(0), ®)

where #(t) € R™ is the estimated state, §(t) € R™ is the
estimated output vector, £(t) € RP denotes the estimated
measurement of z(¢) and K € R"™™ ™ is the state estimator
gain matrix to be determined.

denote the errors by e(t) = x(t) —&(t) and the output signal
as z(t) = z(t) — 2(t), then, based on (1) and (4), we easily
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obtain the error system of the form

é(t) = —(C+ KD)e(t) — KEe(t — h(t)) + By f(t)
+ Bof(t—h(t)+W t f(s)ds
t—d(t)
+ (F1 — KF)w(t),
zZ(t) = He(t), (6)

where £(t) = g((t)) — g(&(t)).

From Assumption 1,
inequalities:

we can obtain the following

1=1,2,....n @)
where a € R and a # 0.

Before proceeding further, the following definition and
lemma are introduced.

Definition 1. [29]. Given a prescribed level of noise
attenuation « > 0, the error system [6] is said to be globally
asymptotically stable with H., performance v, if there is a
proper state estimator such that the equilibrium point of the
result error system with w(¢) = 0 is globally asymptotically
stable, and

IZll2 < ~flwll2

under zero-initial conditions for all nonzero w(t) € L£2]0, 00).

Lemma 1. [15]. For any positive symmetric constant matrix
M € R"*"™, a scalar h > 0, and a vector function w(s) € R"
such that the integrations concerned are well defined, then

f/t th(s)Mw(s)ds
—_— s)as T ' wis)as
o ”d)M(/t_h”d)’

t—h

[ [
2 [ h /ng(s)dsde)TM( [ h /ng(s)dsdé)).

Lemma 2. [13]. For any constants positive definite matrices
wWT = W > 0, U € R"™ are arbitrary matrix with
appropriate dimensions and d > 0, 0 > d(t) > d, the
following inequalities hold:

IN

(s)dsdb

—d [ fTEW(s)ds <
t—d
ftd(t)f(SdS {W U} fttd(t)fs
ftt ;l(t) f( )d UT w f;t d(t)f S .

Lemma 3. [11]. Let the functions fi(t), fa(t),..., fn(t) :
R™ — R have the positive values in an open subset D of R™
and satisfy —fl( ), azfg( ) cnyN(t) D — R with

a; > 0 and Zi:l o; = 1, then the reciprocal technique of
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fi(t) over the set D satisfies

Z fz >Zfz +Zgi7j(t)

i#£]
A )
[gz,;m £5(0) }20'

III. MAIN RESULTS

ng‘(t) :R™ — R,

In this section, a sufficient condition will be estimated
under which the estimation error system (6) is globally
asymptotically stable with an H., performance index ~.
Theorem 1. For given scalars b > 0, d > 0,y > 0, u > 0 and
7, the error system (6) is globally asymptotically stable with
an H, performance index -y if there exist symmetric positive

definite matrices P, R, Ro, Q; = [ Q*“ gm > 000 =
3
1,2,3,4), diagonal matrices T = diag{t1,t2,...,tn} > 0
L:diag{l17l27'--7ln} >~0,A:{)\1,A2,.. )\ } a =
diag{a1,aa,...,an} > 0, 8 = diag{f1,B2,...,0n} > 0,
N; >0 (i =1,2,3), any matrices G, M, T; (i = 1,2,3,4)
and S; (i =1,2,3,4) such that the following LMIs h ds
[Q H
e o ] >0, (3)
[ Qu Q2 Tv T
* Qs Tz Ty
>0, 9
* * Qu Q12 ©)
| * * * Q13

where Q = (1 )17x17 With

M1 =Ri+ R+ 2h2d(p+ —p )+ Bh4(p+ o)
3 -
+2h%ap + h*a + 7ﬁ +h*Qu — Quz + d*Qa

ht d 2 2T
+ ?Qm + 5@41 — h*Q33 — h*Q45 — 2p~ Nip*

—-MC-cMT -GD - DTGT,
Qo=Quz3—Ty—GE, Q3="1Ty4,
h4
Qa=P—p T+p L+ pA+1*Qi2 +h?Qra + ?QSQ
nCMT nDTGT

_h2 + 5+d2Q22+ Q22+N1(p +p7)

+ MB1,
Qi16=MBs, Ug=-QL +hQs3+hQis,
Qio=Ts+hQs3 +hQis, Qi12 = MW,
Q14 = —hQ%y — hQsz, Qa7 =MF, — GF,
Qoo=—(1—p)Ry —2Q33 + Ty +T§ —2p Nap™,

Qog = Qi3 —Tu, Qoa=-nETGT,

Qo6 =No(pt +p7), Qos=0Qf,—T7,

Qoo =—-QL+Ts, Q33=-—Ry—Qi3—2p NapT,
Q37=Ns(p" +p7), Qs=Ty, Qs9=0Q1,
Qya = h2Q13 + %46233 —nM — UMT7
Qs=T—L+A+nMB,, SQ4¢=nMDB>,
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Qg0 =MW, Q17 =9MF, —nGFs,

o hs o d*
Qs5=nh OH‘?ﬂ-’-d Q23+5Q43—2N17

Q6 = —2N3, Q77 = —2N3,
Qs = —2a(p" — p7) = 2dap — Qi1 — Q33 — Q3s,
Qs = —2da(p* — p~) — 2ap — Ty — Q33 — Q3,
Qs,14 = Q32 + Q3y,
Qoo = —2a(p" — p7) — 2ap — Q11 — Q33 — Qi3
Qo4 = Q32+ Qy,  Qio10=—Qa1, Qo1 =51,
Q012 = —Q22, Q1013 = =52, 111 = —Qau,
Q12 = =53, Qi3 =—Q2, Qo12=—Qa3
Q213 = =Sy, 313 = —Qas,
Quipa = —4B(p" — p7) — 4Bp — Q31 — Q11,
Q515 = —Qu1 — Qly,  Ms16 = —Qu2 — Qi
Qg6 = —Qus — Qi3 rar = =71

Furthermore, the gain matrix K can be designed as

K=M"1G.

Proof: Introduce the Lyapunov-Krasovskii functional:

6
V(D)= Vi)

(10)

where

Vi(t) =e” (t) Pe(t),

Va () _/:h(t) ¢T (s) Rye(s)ds + /tiheT(s)Rge(s)ds,

Va(t) 2Zt/ A ~sds
+22li/
+2§:A /m[ﬁ ) + pis)ds,

Va(t) 2h2 / / ie4(3)[fi(s) — o7 ei(s))dsdd
+2h2/ / aiei(s)[pei(s) — fi(s)]dsdd
+2h2 / 6+ s s
+2h22 [ / +/\Biei(s)[fi(s)— prei(s)]dsdrdd

Wil [

+ 2’122 / / s Biei(s)[fi(s) + piei(s)]dsdAdo,

o, 7

[0 s — fils)]ds

ﬁzez Fei(s) — fi(s)]dsd\df

s)dsdf
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wn [ [ reassas

+h2 /_ Oh /9 ’ /,; ¢T (s)Be(s)dsd\db

e [ 0} /6 i t;fT(s)Bf(s)dsdAdH,
v =n [ [ @i

waf /H 07 (5)Qan(s)dsdd

0 0 t
2 T
+h /}/ Hc (5)Q5C(s)dsd\db

+d2/ / / $)Qan(s)dsdAdb,
+,\
where ((s) = [e"(s),e" (s)]", n(s) = [e"(s), fT(s)]".
Under the zero-initial condition, it is obvious that
V(t)|t=0 = 0.
For dealing easily, let
t
Jooz/ (27 (s)z(s) — Y*wT (s)w(s)]ds, t>0. (11)
0

Then, we can get

Joo </O[ (5)2(s) = v*w" (s)w(s)lds + V(t) = V(1) =0,

t>0.
(12)
Then for any w(t) € £3]0,00), we can achieve:
t
Joo < / (27 (5)2(s) — Y2w T (s)w(s) + V(s)|ds.  (13)
0

Now, calculating the time-derivative of V(¢) along the
trajectories of (6) yields

Vi(t) =2¢T (1) Pé(t), (14)
Va(t) <e(t)Rue(t) — (1 — p)e” (t — h(t)) Rue(t — h(t))

el (t)Rae(t) — eT' (t — h) Rae(t — h), (15)

Va(t) =2[f7(t) — e (0)p1Té(t) + 2" ()pT — F7 (1) Le(t)

+ 207 (t) + e () plAé(t). (16)

By using Lemma 1 in V4(t), we get

t) 2h22a1Z
—zhz / e (3)[fi(s) — o ex(s)ds

+2h22alez(t piei(t) — f:(1)]

=1

)i(t) — i ei(t)]

n

—2h) /t . aiei(s)[pfei(s) — fi(s)lds

i=1
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¢ t—h(t)
[/ e(s)ds +/
t—h(t) t—h

¢ t—h(t)
[/ e(s)ds+/
t—h(t) t—h

+ 2K Zazel
—QhZ/ aiei(s

4 n

+2—Zﬂz i(t)fi(t) — p; elt)]

—on? Z / / Brei(s)lfils

+272@e7(t pyeit) — fi(t)]

thQZ/
4 n

+ 2— Zﬂlel(t [fi(t) + piei(t)]

+ pzez( )}

) + piei(s)lds
— p; ei(s)]dsdf
ﬁlel

)piei(t) — fi(t)|dsdo

— 2h2 / Biei(s)[fi(s) + piei(s)]dsdf
3 J-nJite

<2e"(t)[ah®(p* — p7)le(t) + 26T(t)[ﬁ7h(p+ —p)le(t)
+ 2eT(t)dh2pe(t) + 2T (t)ah? f(t) + 2e T(t)ﬂTh4 £
T 2eT (1) / / [ Tasdiipt )

e(s)dsdf — 2h el (s)af(s)ds
/41 /t+0 /tfh

t t—h(t)
- e (s)ds el (s)ds][a —-p
o, s [ @aslatt )
e(s)ds]
th/ el'(s)ape(s)ds

—2h / /+9 [)’pe )dsdf
— 2 / /W ()31 (s)dsdo

<2 (O 0* — p)Je(®) + 267 (O] (o - p et
+ QeT(t)thpe(t) + 2eT (t)ah? f(t) + QeT(t)ﬂ—f(t)
+ 2e (t / /+9 $)dsddB(p* —p7)

/ /+9 s)dsdf + h . heT(s)de(s)ds
t—h(t)
9 /thm (st [ T)asialt o)

e(s)ds]

+h/ 7( af(s)ds—l—hQ/h/H

s)dsdf

1SNI:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:8, No:2, 2014 publications.waset.org/9997830.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:8, No:2, 2014

T
+ R FT(5)3f(s)dsdf — 4 s)dsdd [ e(s)ds Qu Q2
L. o[ [e( oy el | |4 35
ﬁp/ /+9 s)dsdf — 2[/)& o el (s)ds tt_—:(t) e(s)ds
t—h(t t t—h(t e(t —h(t)) —e(t —h)
0) ] ] 0) ]
e (s)ds|a e(s)ds e(s)ds ¢ T
+/tih T (s)ds] p[/th(t) (s) +/HL (s)ds], o[ S els)ds {Tl T, }
a7 e(t) —e(t — h(t)) LT
‘ . ftt:h(t) G(S)dS
Vs(t) = he (t)ae(t) — h /t B e’ (s)ae(s)ds l et Zh{1)) — e(t — h)
t i t els T
OO [ ’fT(s)& f(s)ds REEAEE
T(t)Be(t) — h? / / 5)dsdf i ! ;((Z)) ds
h4 +0 [ Q21 Q2 S Sa ft 6(8) ds
+ = fT)Bf(E) - h2/ F1(s)Bf(s)dsdo. * Qs Sy S | f(s)
2 —hJi+0 * * Qo Qa2 t—d(t) | e(s)
18 ds
. (18) * * x Qo3 t—d f(s)
Using Lemma 2 andTLemma 3, one can deduce that { f ft e s)dsdd ]T
1T 1 1 - t—h(t)
Vi(t) = 2 cj(? Q*n Q12 cf(i) he(t) — ft_h(te(s)ds— M e (s)ds
|:t “ )e-(s) qT Qflgé [ ‘ )J(s) [ Q31 Q32 ] [ f ft+0 dsctle}(t) ]
—h b { é(s) ] [ * Q3 } [ é(s) } 5 * s ft n(t) € ds*ft—h e(s)ds
e(t) 171 Q. Qao ] e(t) J- ft+9 s)dsdf Qa1 Qa2
+dQ[f(t)_ o Qs | {f(t)} [f_ I F(s)dsdd [ x Q43}
t T
IR TN R ) CR e e )
B[ e(t) Qa1 Qs2 || et Noting that, fi itive diagonal matrices Ny, N, N3 and
@)% S]] Notng ta o psive dogoral mariees %, s Y i
0 t
—h2/ [ e(s) } [ @s1 Q32 ] { ) }dsde 0 < — 2T (ONLF (L) + 267 (N1 (pF + p ) F(8)
ntivo | €(8) x Qs (s) T
X T — 27 (t)p” NipTe(t), (20)
+ 5 { Ji ] { le gﬁ } [ } 0< —2f7(t — h(t)Nof(t — h(t))
C 0T es) On Quw 1T e(s) +2¢"(t — h(t))No(pt + p7) f(t — h(t))
—d /d/t+9 (s) } [ « Qus ] [ ] dsdf . _ zj;((i_ ()J)\gpf—(iVQer)e(t — h(t)), (21)
T < — — 3 _
<n [ o0 ] { v } [ o ] 267 (1~ W)N3(p* + p)f(t ~ )
2 e(t) ’ Q21 QQQ e(t) - QeT(t - h)P_NSP+€(t - h) (22)
re 01 Sl ] —— T
T oreover, Ior any matrix w1 appropriate dimension
h—4 [ ?(t) ] [ @a1 Q32 } [ e(t) } and scalar 7, one ha}; PP
2 | é(t) x Q33 é(t)
Y [ o) ]T [ O O } [ ) } 2T ()M + ne” (H)M][—(C + KD)e(t) — K Ee(t — h(t))
2 [ 1) © Qu L) B+ Bof(t— b))+ W [ f(s)ds
e(s)ds t=d(®)
- [ e({;jg@_%(ﬂ) ] [ Qu Qe ] (B - KR)u(t) - é()] = 0. @3)
[ f:ﬁh(t) e(s)ds ] From (13)-(24) and using G = M K, one can deduce that
e(t) —e(t = h(t)) ZT(1)2(1) — 2wl (Ow(t) + V(1) < 0T(0A0(),  (4)
where A; = Q + HTH, H =[H,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0]” and

0T (t) =[e” (1), " (t — h(t)),e" (t = h), " (t), f7 (1),

O T

t—h(t) t t—d(t)
/ eT(s)ds,/ eT(s)ds,/ el
t—h t—d(t) t—d

t t—d(t)
| s [ s,

t—d(t)

[l | [ e

0 t
/ fE(s)dsdd, wT (t)].
—d Jt+0

By using Schur complement, the LMIs (8) and (9) can
guarantee Ay < 0. In this case, when A; < 0, we can ensure
the error system (6) with the guaranteed H., performance
defined by Definition 2. Next, we will show that the
equilibrium point of (6) with w(t) = 0 is globally
asymptotically stable if A; < 0 holds. When w(¢) = 0, the
error system (6) becomes

é(t) = —(C + KD)e(t)

(8)d57

s)dsd®,

(25)

— KEe(t — h(t)) + B.f(t)

t
+Bof(t—7(t)+ W f(s)ds,
t—d(t)

2(t) = He(t), (26)

We still consider the Lyapunov-Krasovskii functional in (10)
and calculate its time-derivative along the trajectories of (26),
then we can easily get

V(t) < 07 (t)A201(2), @7
where
01 (t) =[e” (t), €™ (t = h(t)), e (t — h), e (1), f7 (1),
e, Me-m, [ s
t—h(t) . t—d(t)
/tih el (s)ds, /td(t) el (s)ds, /tid el (s)ds,

t t—d(t)
T
/td(t) (s)ds/ fr(s)ds,

/ / s)dsdb / / s)dsdb,
+0 t40
[ [ srisasan,
—d Jt+0
and A2 = (Aj_’k)lﬁxlﬁ with
Ar1 =Ry + Ry +20%a(p" — p7) + Bh*(pT — p7)

ht -
+2h%ap + h%a + 7[3 +h2Q11 — Qi3 + d*Qa

h4 4
+ ?Q:n + 5@41 — h?Qa3 — h?Qi; — 2p" Nip©
—-MC—-cM? —-GD - DTGT,
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Ao=Quzs—Ty—GE, Ai3="T,,
h4
AMag=P—p T+p"L+pA+h°Qi2+h*Quz+ ?Qsz
— M —nCMT —nDTGT,

. h*. d* _
A =h*a+ ?5 +d* Qa2 + ?Q22 + Ni(p™ +p7)

+ M By,
Mg =MB;, Aig=—Qly+hQss+ hQis,
Aig=Ts+hQs3 +hQ3;, Ay =MW,
Av1a = —hQ3 — hQa2,
Aoo=—(1—p)Ry —2Qa3 + Ty +T{ —2p" Nop™,
Ao =Qi3— Ty, Apy=-nETGT,
Ao =No(pt +p7), Aog=Q1, T4,
Mog=—-Qy+T3, As3=—Ro—Qi3—2p N3p™,
As7=N3(pt+p7), Ass=T5, Asp=Q,,

4

Ma = W2Qus + - Qus — M — M,
Ms=T—L+A+nMDBy, Aye=nMDBs,

Ag2 =MW,
2~ ht 2 d
As 5 =h’a+ o P+ d Qs+ 5 Qus — 2NV,
Agg = —2N2, A7z = —2N3,
Agg = —2a(p™ —p7) — 2ap — Q11 — Q33 — Qis,
Ago = —2a(pT —p7) —2ap —T1 — Q33 — Q1.
As1a = Qs2 + Q3,
Ngo = —Qa(p —p7)—2ap — Q11 — Q33 — Qgs,

No1a = Q52+ Q3 Moo =—Q21, Aro11 = —5i,
Aro12 = —Q22, Aoz = —5, A =—0Qo,
A2 =—53, Az =—Qa, A1z =—Qos,
A1213 = =S4, Mi313 = —Qa3,

Avapa = —4B(p" — p7) — 4Bp — Q31 — Q11,

As1s =—Qu — QL. Aisi6 = —Quz — Ql,

T
Aig,16 = —Qa3 — Q13-

Let G = MK, it is obvious that if A; < 0, then Ay < 0.
Consequently, the error system (26) is globally
asymptotically stable. On the other hand, if A; < 0, then the
state estimator (5) for the neural network (1) guarantees H .,
performance and also guarantees that the error system (6) is
globally asymptotically stable. This completes the proof. M

Remark 2. Compared to [20], the constructed
Lyapunov-Krasovskii functional in Theorem 1 is more
general and desirable, the time-delay and its time variation
can be fully considered, we introduced the following integral
terms:

s) + psislds

22)\/

thz: /_h /t+9 aiei(s)[fi(s) + piei(s)]dsdo
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6161 fz( ) + plel(s)]dsd)\dO

w3y [,
Remark 3. In this paper, the constraint on derivative of
time-varying delay less than one is removed. In addition, the
time-varying delay is assumed to be bounded and
differentiable, these results become non-differential when
Ry = 0 in Lyapunov-Krasovskii functional (10).
Remark 4. Using Lemma 2, the term — tt__dd(t) el'(s)
Re(s)ds is not omitted. Moveover, Lemma 3 is used, more
information on cross terms fttih(t)e(s)ds, tt:f(t)e(s)ds,
e(t), e(t — h(t)) and e(t — h) are employed. Through the
numerical examples, the effectiveness of this method was
demonstrated.

When W = 0, the system (1) can be described as follows:
i(t) = —Cux(t) + Big(z(t)) + Bag(z(t — h(t))

+ J+ Fiw(t),
y(t) = Dx(t) + Bx(t — h(t)) + Fow(t),
z(t) = Hax(t),
x(s) = p(s), Vse[-1,0], 7=max{h,d} (28)
then, the error system becomes
é(t)=—(C+ KD)e(t) — KEe(t — h(t)) + B1f(t)
+ Baof(t — h(t)) + (F1 — KF2)w(t)
Z(t) = He(t). (29)

We consider the Lyapunov-Krasovskii functional for system
(29) as follows:

(30)
where

+0
0 0 st
2 T
+h [h/Q t+)\( ()Q2C(s)dsdAdb.

L T (5)Quc(s)dsdd

By a similar method to that employed in Theorem 1, it is easy
to have the following results.

Corollary 1. For given scalars h > 0, v > 0, x> 0 and 7,
the error system (29) is globally asymptotically stable with
an H.,, performance index ~ if there exist symmetric

positive definite matrices P, Ry, R,

Qi = Q*“ giz > 0(i = 1,2), diagonal matrices
i3

T = diag{tl,tQ, L ,tn} >0, L= diag{ll,lg, R ,ln} > 0,

A = {A, e, ), & = diag{ag,ag,...,a,} > 0,

B = diag{Bi,B2,...,Ba} > 0, N; > 0 (i = 1,2,3), any
matrices G, M and T; (i = 1,2,3,4) such that the following
LMI holds:

O H
[ . g ] >0, (31
where H = [H,0,0,0,0,0,0,0,0,0,0]” and Q = (1) 11x11

International Scholarly and Scientific Research & Innovation 8(2) 2014

with
Q11 = Ry + Ry + 2h%a(pt — p7) + SR (o™ — p7)

+ 2h2%ap + h2a + 243 +h*Q11 — Q13
+ %Qm —h*Qa3 — K*Q35 — 2p" Nip™
- MC-CcMT -GD - DTGT,
Qo=0Qiuz3—Ty—GE, Q3="1},
Qs=P—p THp L+ pA+h?Qia+h?Qia + %4Q22
—nCMT —yDTGT,

B §
Qs =6+ B+ Ni(p* +p7) + MBy,

Qg=MBs, Qig=-Ql,+hQas+hQls,
Qo =Ts+hQas + hQs3, Q110 = —hQ3y — hQao,
Q1= MF, —GFy,
Qoo = —(1— p)Ry — 2Qos + Ty + T —2p™ Nap*,
Qo3 =Qi3— Ty, Q4=-nETGT,
Qoo =No(p" +p7), Qs=Q—Ty,
Qoo = Qg+ T3, Q33=—Ry—Qi3—2p Nap™,
Qa7 =N3(pT+p7), Qss=T7, Qs9=0Q7%,

4
1 = W2Qus + o Qos — M — M,
Qus=T—L+A+nMB,, Qug=nMBs,

Qi1 =nMF; —nGFy, Q55 =h*a+ %B — 2Ny,

Q.6 = —2N2, 77 = —2N3,

Qs = —2a(p" — p7) — 2ap — Qu1 — Qa3 — Q33,

Qg9 = —2a(p" —p~) —2ap —T1 — Qa3 — Q1s,

Q5,10 = Qa2 + Q3

Qoo = —2a(p™ — p7) — 28p — Q11 — Q23 — Q1s,

Qg 10 = Q22 + Qsz’

Qo0 = —4B8(pT — p7) — 4Bp — Q21 — Q1

Q111 = 1.
Furthermore, the gain matrix K can be designed as

K=M"G.
Remark 5. In this paper, when the term V,(¢) changed as

Vi(t) :2hi/_0h /t; ariei(s)[fi(s) —

2h Zn: /0 /; aziei(s)[pi eils)

+2hZ / } / | cne(8)fils) + pieu(s)]dsdd

pieils))dsdb

— fi(s)]dsdo

+2h° Z/ / . Briei(s)[fi(s) — p; ei(s)]dsd\do

WL []

ﬁzzez )i ei(s) — fi(s)|dsd\do
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n 0 0 t
+2h2; [ . /0 | Buei(s)1fi(s) + pies(s)]dsdrdo,

the constructed Lyapunov-Krasovskii functional in Theorem
1 and in Corollary 1 can more general and desirable. In the
future, we will do some further research on state estimation
problems about this generalized Lyapunov-Krasovskii
functional.

IV. NUMERICAL EXAMPLES AND SIMULATION

In this section, a numerical example and its simulations are
given to show the effectiveness of the result.
Example 1. Consider the error-state system (6) with the
following parameters

14 0 1073
C‘[ 0 1.2}’ Bl_{—o.zl 1.2]’

—0.7 04 -03 02
Bz = [ —0.5 0.15 ] W= [ —-0.3 0.2 }

F = [ —0.2 } Fy =0.2,

05 D=[-11 0],

E=[04 0] H:H _11]

here the activation functions are assumed to be g(x(t)) =
tanh(x(t)) with p; = p; = 0and pj = p5 = 1. We consider
the time-varying delay as h(t) = 0.5 4 0.5cost, which means
h =1 and p = 0.5, the distributed delay is chosen as 0 <
d(t) < d = 0.5. Furthermore, the noise distraction is taken
as w(t) = 0.01e~00005%5in(0.02t), t > 0. By applying the
MATLAB LMI Tool box to solve the problem, the estimator
gain matrix is obtained as:

—6.7245

with the optimal H., index v;,;, = 1.5969 and n = 0.15. In
addition, we can derive the minimum H,, performance
index for different A and p with fixed d = 0.5, which are
summarized in Table I. Figs. 1 and 2
trajectories of true state xq(¢t) and ao(t) and their
estimations Z1(¢) and &5(t) with initial conditions
[30,—25]T and [-17,5]T, respectively. The response of the
error e1(t) and ey(t) are given in Fig. 3.

K= M-l0 [ —12.2869 ]

TABLE 1
MINIMUM H s, PERFORMANCE INDEX v WITH DIFFERENT (H, () AND
FIXED d = 0.5
Method (1, 0.3) (0.9, 0.3) (0.8, 0.5) 0.8, 1.2)
n =0.15 1.4517 1.3320 1.3212 1.6923
n = 0.20 1.1348 2.2576 0.9565 1.1240

V. CONCLUSION

In this paper, the problem of H., state estimation for
neural networks with discrete and distributed delays has been
investigated, The presented sufficient conditions are based on
the appropriated Lyapunove-Krasovskii functional with triple
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show that the
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Fig. 1. Trajectories of state z1(t) and its estimation
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Fig. 3. The state responses of the error system with different initial conditions
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integrals, appropriate free-weighting matrices, zero equalities
and reciprocally convex approach. Moreover, the time-delay
and its time variation can be fully considered. New
delay-dependent stability criteria are established in terms of
LMIs. A numerical example and its simulations are given to
demonstrate the usefulness and effectiveness of the proposed
results.
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