Search results for: adsorption efficiency
2236 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies
Authors: Elvira S. Castillo, Surupa Shaw
Abstract:
This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.
Keywords: Fluid mechanics, sustainable energy, energy efficiency, green energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472235 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.
Keywords: Corrugated absorber, double flow, exergy efficiency, solar air heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9382234 Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach
Authors: Inaki Maulida Hakim, T. Yuri M. Zagloel, Astari Wulandari
Abstract:
Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.
Keywords: Assembly line, efficiency, improvement, line balancing, productivity, six sigma, workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18202233 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15292232 Approximation Incremental Training Algorithm Based on a Changeable Training Set
Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei
Abstract:
The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14842231 Measuring the Efficiency of Medical Equipment
Authors: Panagiotis H. Tsarouhas
Abstract:
the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.Keywords: Reliability, Availability, Series-parallel System, medical equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23962230 Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran)
Authors: H. R. Moghadamzadeh, M. Naimi, H. Rahimzadeh, M. Ardjmand, V. M. Nansa, A. M. Ghanadi
Abstract:
The Iranian bentonite was first characterized by Scanning Electron Microscopy (SEM), Inductively Coupled Plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), X-ray Diffraction (XRD) and BET. The bentonite was then treated thermally between 150°C-250°C at 15min, 45min and 90min and also was activated chemically with different concentration of sulphuric acid (3N, 5N and 10N). Although the results of thermal activated-bentonite didn-t show any considerable changes in specific surface area and Cation Exchange Capacity (CEC), but the results of chemical treated bentonite demonstrated that such properties have been improved by acid activation process.Keywords: Acid activation, Bentonite, CEC, Thermal activation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28452229 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods
Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar
Abstract:
Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.
Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10182228 A ZVS Flyback DC-DC Converter using Multilayered Coreless Printed-Circuit Board(PCB) Step-down Power Transformer
Authors: Hari Babu Kotte, Radhika Ambatipudi, Dr. Kent Bertilsson
Abstract:
The experimental and theoretical results of a ZVS (Zero Voltage Switching) isolated flyback DC-DC converter using multilayered coreless PCB step down 2:1 transformer are presented. The performance characteristics of the transformer are shown which are useful for the parameters extraction. The measured energy efficiency of the transformer is found to be more than 94% with the sinusoidal input voltage excitation. The designed flyback converter has been tested successfully upto the output power level of 10W, with a switching frequency in the range of 2.7MHz-4.3MHz. The input voltage of the converter is varied from 25V-40V DC. Frequency modulation technique is employed by maintaining constant off time to regulate the output voltage of the converter. The energy efficiency of the isolated flyback converter circuit under ZVS condition in the MHz frequency region is found to be approximately in the range of 72-84%. This paper gives the comparative results in terms of the energy efficiency of the hard switched and soft switched flyback converter in the MHz frequency region.Keywords: Coreless PCB step down transformer, DC-DCconverter, Flyback, Hard Switched Converter, MHz frequencyregion, Multilayered PCB transformer, Zero Voltage Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42442227 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.
Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23802226 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides
Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase
Abstract:
In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21042225 Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach
Authors: M. Ismail, Cao Yihua, Zhao Ming
Abstract:
Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.
Keywords: airfoil, discrete phase modeling, heavy rain, Reynolds number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36412224 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area
Authors: Mahshid Hatamzad, Geanette Polanco
Abstract:
Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.
Keywords: DEA, environmental impacts, risk and safety, WRM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5552223 Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency
Authors: K. Bashirnezhad, M. Joleini
Abstract:
The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman.Keywords: Furnace dimensions, Oxides of Nitrogen, Carbonmonoxide, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17922222 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model
Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang
Abstract:
This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37772221 Working Capital Efficiency and Firm Profitability – Nigeria and Kenya
Authors: Lucian J. Pitt
Abstract:
The primary purpose of this study is to understand the differences in the relationship between working capital management efficiency, working capital investment decisions and working capital finance decisions and the profitability of firms within the context of two African developing economies, Kenya and Nigeria. The study finds that there is a significant difference in the relationship between the firm’s profitability and the working capital variables which suggests different challenges for working capital management in each of these countries.
Keywords: Working Capital Management, Working Capital Investment, Working Capital Finance, Profitability, Cash Conversion Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30852220 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting
Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh
Abstract:
In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing within a fluid in an implant assisted cylindrical channel under magnetic field. A coil of ferromagnetic SS-430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles (MNPs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17982219 Using Rao-Blackwellised Particle Filter Track 3D Arm Motion based on Hierarchical Limb Model
Authors: XueSong Yu, JiaFeng Liu, XiangLong Tang, JianHua Huang
Abstract:
For improving the efficiency of human 3D tracking, we present an algorithm to track 3D Arm Motion. First, the Hierarchy Limb Model (HLM) is proposed based on the human 3D skeleton model. Second, via graph decomposition, the arm motion state space, modeled by HLM, can be discomposed into two low dimension subspaces: root nodes and leaf nodes. Finally, Rao-Blackwellised Particle Filter is used to estimate the 3D arm motion. The result of experiment shows that our algorithm can advance the computation efficiency.Keywords: Hierarchy Limb Model; Rao-Blackwellised Particle Filter; 3D tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902218 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field
Authors: Anurag Gaur, Nidhi, Shashi Sharma
Abstract:
Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342217 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency
Authors: Valeriya Tyo, Serikbolat Yessengabulov
Abstract:
Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.Keywords: Building geometry, energy efficiency, heat gain, heat loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25312216 Encryption Efficiency Analysis and Security Evaluation of RC6 Block Cipher for Digital Images
Authors: Hossam El-din H. Ahmed, Hamdy M. Kalash, Osama S. Farag Allah
Abstract:
This paper investigates the encryption efficiency of RC6 block cipher application to digital images, providing a new mathematical measure for encryption efficiency, which we will call the encryption quality instead of visual inspection, The encryption quality of RC6 block cipher is investigated among its several design parameters such as word size, number of rounds, and secret key length and the optimal choices for the best values of such design parameters are given. Also, the security analysis of RC6 block cipher for digital images is investigated from strict cryptographic viewpoint. The security estimations of RC6 block cipher for digital images against brute-force, statistical, and differential attacks are explored. Experiments are made to test the security of RC6 block cipher for digital images against all aforementioned types of attacks. Experiments and results verify and prove that RC6 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC6 block cipher algorithm. So, RC6 block cipher can be considered to be a real-time secure symmetric encryption for digital images.
Keywords: Block cipher, Image encryption, Encryption quality, and Security analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24252215 Energy Recovery Soft Switching Improved Efficiency Half Bridge Inverter for Electronic Ballast Applications
Authors: A. Yazdanpanah Goharrizi
Abstract:
An improved topology of a voltage-fed quasi-resonant soft switching LCrCdc series-parallel half bridge inverter with a constant-frequency for electronic ballast applications is proposed in this paper. This new topology introduces a low-cost solution to reduce switching losses and circuit rating to achieve high-efficiency ballast. Switching losses effect on ballast efficiency is discussed through experimental point of view. In this discussion, an improved topology in which accomplishes soft switching operation over a wide power regulation range is proposed. The proposed structure uses reverse recovery diode to provide better operation for the ballast system. A symmetrical pulse wide modulation (PWM) control scheme is implemented to regulate a wide range of out-put power. Simulation results are kindly verified with the experimental measurements obtained by ballast-lamp laboratory prototype. Different load conditions are provided in order to clarify the performance of the proposed converter.Keywords: Electronic ballast, Pulse wide modulation (PWM) Reverse recovery diode, Soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21902214 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle
Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah
Abstract:
This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24292213 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network
Authors: V. P. Dhivya, R. Arthi
Abstract:
Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.
Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29892212 Effects of Dust on the Performance of PV Panels
Authors: Shaharin A. Sulaiman, Haizatul H. Hussain, Nik Siti H. Nik Leh, Mohd S. I. Razali
Abstract:
Accumulation of dust from the outdoor environment on the panels of solar photovoltaic (PV) system is natural. There were studies that showed that the accumulated dust can reduce the performance of solar panels, but the results were not clearly quantified. The objective of this research was to study the effects of dust accumulation on the performance of solar PV panels. Experiments were conducted using dust particles on solar panels with a constant-power light source, to determine the resulting electrical power generated and efficiency. It was found from the study that the accumulated dust on the surface of photovoltaic solar panel can reduce the system-s efficiency by up to 50%.Keywords: Dust, Photovoltaic, Solar Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137362211 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.
Keywords: Heterojunction, modeling, simulation, thin film, Tcad Silvaco.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12452210 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition
Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi
Abstract:
Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22902209 WDM and OCDMA Systems under MAI Effects: A Comparison Analysis
Authors: Hilal A. Fadhil, Thanaa Hussein Abd, Hamza M. R. Al-Khafaji, S. A. Aljunid
Abstract:
This paper presents a comparison between Spectrum- Sliced Wavelength Division Multiplexing (SS-WDM) and Spectrum Amplitude Coding Optical Code Division Multiple Access (SAC Optical CDMA) systems for different light sources. The performance of the system is shown in the simulated results of the bit error rate (BER) and the eye diagram of both systems. The comparison results indicate that the Multiple Access Interference (MAI) effects have a significant impact on SS-WDM over SAC Optical CDMA systems. Finally, in terms of spectral efficiency at constant BER of 10-12, SSWDM offers higher spectral efficiency than optical CDMA since no bandwidth expansion in needed.Keywords: WDM, OCDMA, BER, RD code
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23812208 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs
Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim
Abstract:
A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.
Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10922207 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.
Keywords: Aspiration efficiency, energy, particulate matter, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477