Search results for: Vector Differential Equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2341

Search results for: Vector Differential Equation.

1891 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1890 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1889 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
1888 Knowledge Relationship Model among User in Virtual Community

Authors: Fariba Haghbin, Othman Bin Ibrahim, Mohammad Reza Attarzadeh Niaki

Abstract:

With the development of virtual communities, there is an increase in the number of members in Virtual Communities (VCs). Many join VCs with the objective of sharing their knowledge and seeking knowledge from others. Despite the eagerness of sharing knowledge and receiving knowledge through VCs, there is no standard of assessing ones knowledge sharing capabilities and prospects of knowledge sharing. This paper developed a vector space model to assess the knowledge sharing prospect of VC users.

Keywords: Knowledge sharing network, Virtual community, knowledge relationship, Vector Space Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
1887 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit time marching. The code is verified by space and time convergence tests using a manufactured solution. An example problem is solved with an axisymmetric formulation and with a 3D formulation. Both formulations lead to the same result but the code based on the axisymmetric formulation is mush faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest of using an axisymmetric formulation when it is possible.

Keywords: Axisymmetric problem, continuous finite elements, heat equation, weak formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
1886 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
1885 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
1884 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
1883 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1882 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

Authors: P.Tripura, Y.Srinivasa Kishore Babu

Abstract:

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6499
1881 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
1880 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise

Abstract:

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1879 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1878 Real-Time Physics Simulation Packages: An Evaluation Study

Authors: J.Zouhair, D.Ellison

Abstract:

This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to control its behavior. The packages were compared with respect to model creation, solving systems of differential equation, data storage, setting system variables, control the experiment and ease of use. The purpose of this paper is to give an overview about our experience with these environments and to demonstrate some of the benefits and drawbacks involved in practice for each package.

Keywords: DANCE, Inverted Pendulum, ODE, Simulation Packages, Webots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1877 DTC-SVM Scheme for Induction Motors Fedwith a Three-level Inverter

Authors: Ehsan Hassankhan, Davood A. Khaburi

Abstract:

Direct Torque Control is a control technique in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators. DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to those problems is to use the space vector depends on the reference torque and flux. In this Paper The space vector modulation technique (SVPWM) is applied to 2 level inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple. Then the controller based on space vector modulation is designed to be applied in the control of Induction Motor (IM) with a three-level Inverter. This type of Inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, Lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper proposes a general SVPWM algorithm for three-level based on standard two-level SVPWM. The proposed scheme is described clearly and simulation results are reported to demonstrate its effectiveness. The entire control scheme is implemented with Matlab/Simulink.

Keywords: Direct torque control, space vector Pulsewidthmodulation(SVPWM), neutral point clamped(NPC), two-levelinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396
1876 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video

Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine

Abstract:

In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.

Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
1875 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1874 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
1873 One-Class Support Vector Machines for Aerial Images Segmentation

Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen

Abstract:

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1872 Numerical Study of a Class of Nonlinear Partial Differential Equations

Authors: Kholod M. Abu-Alnaja

Abstract:

In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.

Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1871 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
1870 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: Free particle, point canonical transformation method, position-dependent mass, staggered mass distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1869 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method

Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi

Abstract:

In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.

Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6850
1868 Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

Authors: Yasuo Obikane

Abstract:

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

Keywords: Turbulence Modeling , Density Gradient Correlation, Compressible

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1867 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

Authors: Sarun Phibanchon, Michael A. Allen

Abstract:

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

Keywords: Soliton, instability, variational method, spectral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3700
1866 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.

Keywords: p-Laplacian, cone, fixed point theorem, positive solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
1865 Cladding of Al and Cu by Differential Speed Rolling

Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha

Abstract:

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
1864 Emotion Classification using Adaptive SVMs

Authors: P. Visutsak

Abstract:

The study of the interaction between humans and computers has been emerging during the last few years. This interaction will be more powerful if computers are able to perceive and respond to human nonverbal communication such as emotions. In this study, we present the image-based approach to emotion classification through lower facial expression. We employ a set of feature points in the lower face image according to the particular face model used and consider their motion across each emotive expression of images. The vector of displacements of all feature points input to the Adaptive Support Vector Machines (A-SVMs) classifier that classify it into seven basic emotions scheme, namely neutral, angry, disgust, fear, happy, sad and surprise. The system was tested on the Japanese Female Facial Expression (JAFFE) dataset of frontal view facial expressions [7]. Our experiments on emotion classification through lower facial expressions demonstrate the robustness of Adaptive SVM classifier and verify the high efficiency of our approach.

Keywords: emotion classification, facial expression, adaptive support vector machines, facial expression classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
1863 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
1862 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation

Authors: Montri Maleewong, Sirod Sirisup

Abstract:

The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.

Keywords: Projective integration, POD method, equation-free.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355