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Abstract—Interpretation of aerial images is an important task in
various applications. Image segmentation can be viewed as the essen-
tial step for extracting information from aerial images. Among many
developed segmentation methods, the technique of clustering has been
extensively investigated and used. However, determining the number
of clusters in an image is inherently a difficult problem, especially
when a priori information on the aerial image is unavailable. This
study proposes a support vector machine approach for clustering
aerial images. Three cluster validity indices, distance-based index,
Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative
measures of the quality of clustering results. Comparisons on the
effectiveness of these indices and various parameters settings on the
proposed methods are conducted. Experimental results are provided
to illustrate the feasibility of the proposed approach.

Keywords—Aerial imaging, image segmentation, machine learn-
ing, support vector machine, cluster validity index

I. INTRODUCTION

Aerial imaging is one of the most common and versatile
ways of obtaining information from the Earth surface. In-
terpretation and annotation of aerial images is an important
task in various applications. In order to successfully extract
and understand interesting objects from aerial images, an
automatical extraction procedure is essential [1], [2], [3].
Image segmentation is a basic but important technique, which
partitions an image into physically meaningful regions and
helps advanced analysis [4], [5]. Among many developed
segmentation methods, the techniques of clustering have been
extensively investigated and used.

The aim of cluster analysis is to partition a given set of
data or objects into clusters. That data or objects in the
same cluster have some properties in common and the ones
across clusters are discriminated by other properties. Many
clustering methods were proposed in the literatures [6], [7]
and have been effectively used in many applications such as
image processing, pattern recognition, information retrieval,
data mining, etc.

Whatever the clustering method used, two key issues are
critical. The first one is the efficiency of the clustering
algorithm that can partition objects or data efficiently and
reasonably. The second one is a reasonable estimation on the
number of clusters to be used in the clustering algorithm. This
estimation is an intrinsic part of the clustering procedure and
a false estimate makes the clustering meaningless [8], [9].
Usually, this number is subjectively determined by the users.
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However, it is difficult for users to have exact ideas about
the number of clusters in real-life analysis on aerial images.
Hence, most of the users are forced to employ an trial-and-
error means to determine the number of clusters when they use
these clustering methods. It is a tedious task and the clustering
result may be meaningless when the number of clusters is
wrong. Therefore, determining a proper number of clusters and
providing the appropriate clustering under this circumstance
are real challenges. For aerial image analysis, these issues are
extremely critical because an incorrect number of clusters may
wipe out and neglect meaningful objects and merge them with
the meaningless ones.

In this paper, a machine learning-based clustering method is
applied to aerial images segmentation. The proposed approach
employs support vector machines (SVMs) as the core cluster-
ing mechanism. One-class support vector machine (OCSVM)
is a version of SVM [10]. Three cluster validity indices,
including distance-based (DS) index, Davies-Bouldin (DB)
index [11], and Xie-Beni (XB) index [12] are utilized as
quantitative measures of the quality of clustering results. The
feasibility of the proposed approach is demonstrated on several
real aerial images.

II. RELATED WORK

Image segmentation can be achieved by a variety of ap-
proaches. This section presents several methods based on soft-
computing and machine learning. A new multistage method
using hierarchical clustering for unsupervised image classifi-
cation was presented [13]. In the first phase, the multistage
method performs segmentation using a hierarchical clustering
procedure which confines merging to spatially adjacent clus-
ters and generates an image partition such that no union of
any neighboring segments has homogeneous intensity values.
In the second phase, the segments resulting from the first
stage are classified into a small number of distinct states by
a sequential merging operation. Xia et al. [14] presented an
approach to perceptual segmentation of images through the
means of clustering of spatial patterns. An image is modeled
as a set of spatial patterns defined on a rectangular lattice. The
distance between a spatial pattern and each cluster is defined
as a combination of the Euclidean distance in the feature space
and the spatial dissimilarity which reflects how much of the
pattern’s neighborhood is occupied by other clusters. Cao et
al. [3] proposed a novel segmentation algorithm implemented
within a level sets framework to deal with multi-class partition-
ing problem. Focusing on low resolution photographic gray
aerial images, their method performs feature extraction at the
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first stage, evolves curves according to the proposed algorithm
at the next stage and gets the partition result in the end.
An evolutionary-fuzzy clustering algorithm for automatically
grouping the pixels of an image into different homogeneous
regions was presented in [15]. The algorithm does not require
a prior knowledge of the number of clusters. The fuzzy cluster-
ing task in the intensity space of an image is formulated as an
optimization problem. An improved variant of the differential
evolution algorithm has been used to determine the number of
naturally occurring clusters in the image as well as to refine
the cluster centers.

III. ONE-CLASS SUPPORT VECTOR MACHINE

Support vector machine (SVM) has been emerging as a
popular classifier due to its efficiency and ability to handle
complex problems. Its basic idea to transform data points
from data space to a high dimensional feature space using
a kernel function so that the data points in the feature space
become linearly separable. This study employs one-class SVM
(OCSVM) for aerial image segmentation in an incremental
manner. OCSVM [16] is a kernel-based method for construct-
ing a classifier only using a set of positive training patterns.
For a set of training patterns, OCSVM finds a hyperplane
to separate these patterns from the origin O with maximum
margin w · φ(xi) = ρ where xi lies on the hyperplane H .
The distance between the origin O and H is ρ/‖w‖. To allow
for the possibility of outliers in the data set and to make the
method more robust, the projection value from an image on w
need not be strictly larger than ρ, but the small projection value
should be penalized. Therefore, slack variables ξi, i = 1, . . . , l,
are introduced to account for small projection values, and the
objective function and constraints are the following:

min
1

2
‖w‖2 − ρ+

1

νl

l∑
i=1

ξi

s.t. w · φ(xi) ≥ ρ− ξi, ξi ≥ 0, ∀xi ∈ l (1)

where φ is a nonlinear mapping from the input space to the
feature space, and ν ∈ (0, 1] is a parameter which gives a
trade-off between the maximum margin and the errors. With
a small ν, the penalty on small projection values become
substantial, thus few outliers should exist and the margin is
small. On the other hand, when ν is large, many outliers with
small projection values may exist to take advantage of the
small penalty and the margin is generally large. In practice,
the size of ν is an upper bound on the fraction of outliers and
a lower bound on the fraction of support vectors [16].

To solve the constrained optimization problem, Lagrangian
is introduced. Also, to avoid working in the high-dimensional
feature space, we pick a feature space where the dot product
can be calculated directly using a kernel function K in the
input space, and the Wolfe dual form, which is a quadratic
function in α′

is, becomes:

min
1

2

l∑
i,j=1

αiαjK(xi, xj)

s.t. 0 ≤ αi ≤ 1

νl
,

l∑
i=1

αi = 1. (2)

This constrained optimization problem can be solved using
a standard QP solver. Three commonly used kernel functions
are Polynomial, Sigmoid, and RBF. Throughout this paper, the
RBF kernel is adopted. That is:

K(xi, xj) = exp(−q‖xi − xj‖2) (3)

where q is the width parameter. This equation implies that
each input point is mapped on the octant surface of the unit
ball in the high-dimensional feature space.

It is reported that SVM usually outperforms other soft-
computing methods such as artificial neural networks, genetic
algorithms, in efficiency, scalability, and performance [17],
[18], [19]. Many machine learning algorithms suffer from
common disadvantages such as considerably long training time
and over-fitting. Most of the reasons of these disadvantages are
from the fact that they employ the empirical risk minimization
(ERM) principle to learn patterns. ERM minimizes risks
resulting from the training data only; thus it may overfit a
model. When a lot of training data, such as in an aerial image,
are processed, the training time and performance become
worse. Conversely, SVM uses the structural risk minimization
(SRM) principle to train a model. SRM incorporates the
model complexity into a learning process and may avoid the
overfitting problem encountered in many learning algorithms.

IV. THE PROPOSED APPROACH

An aerial image can be considered as a collection of data
points featured by color, texture, or other image properties.
Points with specific features may organize meaningful and
interesting objects, such as rivers, buildings, forest, etc. The
objects consisting of pixels in the same or very similar features
and pixels in different features may represent another objects.
That is, meaningful objects in an aerial image can be figured
out provided that the pixels can be properly clustered.

OCSVM is the kernel for image segmentation in this
study. SVM is widely used for supervised classification and
regression problems; it can also be applied to data clustering.
OCSVM performs aerial image segmentation in an incre-
mental manner. First, an image is roughly partitioned into
k regions where k ≥ 2 is given by the user. OCSVM is
invoked for k times, each run produces one clustering model
for a region. The resulting k clustering models are united for
a complete model for clustering. If the evaluating result is
unsatisfactory, a new round of OCSVM is invoked for k=k+1
times. This procedure iterates until the cluster validity index
reaches a satisfactory result. Though there have been several
SVM-based methods proposed for unsupervised clustering,
their performance and difficulty in determining the number
of clusters still need some improvement. The use of OCSVM
for aerial image segmentation is described as follows.

A. OCSVM for Clustering

Let I0={p1, p2, . . . , pn} be an aerial image consisting of n
pixels. Each pi, 1 ≤ i ≤ n has m features f1, f2, . . . , fm.
By the kernel function, p1, p2, . . . , pn are mapped into a high-
dimension feature space. Then, I0 can be partitioned into a
given number of k clusters by training OCSVM iteratively for
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k times. In each iteration, a subset of image Ii, 1 ≤ i ≤ k, is
selected from I0, where Ii ∩ Ij=∅, 1 ≤ i, j ≤ k, i 	= j, and
∪iIi=I0. Ii is used as the training dataset fed into OCSVM.
The data which can be separated by the hyperplane satisfying
Eq.(1)–Eq.(3) form a cluster. The support vectors associated
with the corresponding boundaries of the hyperplane organize
a clustering model Ci for I0. By repeating the same procedure
for k times, a k-clustering models C can be obtained such that
C={C1, . . . , Ck}.

It is assumed that data in each Ii are separable by one run of
OCSVM. The data points included in a cluster Ci are featured
by most significant features. The ones excluded by Ci may
belong to another cluster Cj , i 	= j, which will be formed in
a later-on iteration of OCSVM. Therefore, post-processing is
needed to form a complete clustering model by joining all Ci

and Cj . Notice that, it is possible that two clusters Ci and Cj

obtained in different iterations may contain the same support
vectors. This is because that the data points in Ii and Ij belong
to the same area in I0 and they both are featured by the same
dominating features. In such cases, the number of clusters may
be less than k.

B. Sampling Data for Training OCSVM

When using OCSVM, there are two important factors, i.e.,
selecting Ii from I0 and determining the number k of clusters,
to be carefully considered. Theoretically, if all data belonging
to the same cluster can be completely extracted from I0 and
then retained in Ii, i.e., Ii includes only this cluster, the
best OCSVM result can be obtained. This is possible only
when a sophisticated clustering algorithm is performed on
I0 and can successfully extract a complete cluster in each
iteration of OCSVM. Unfortunately, this is impossible since
the clustering algorithm is not performed yet. Besides, it may
need considerable overheads on running this pre-clustering
algorithm which may degrade the overall performance of
OCSVM. This study uses heuristics for fast determining which
pixels are included in Ii. These sampling heuristics are simple
but fast, which may only slightly delay the running of later-on
OCSVM. They are presented as follows.

1) Stripe sampling: I0 is evenly partitioned alone the x- or
y-axis into k stripes in the same size. The pixels in a
strips form an Ii.

2) Block sampling: I0 is evenly partitioned into p × q
blocks bx,y , 1 ≤ x ≤ p, 1 ≤ y ≤ q. bx,y is in
the same size. Each Ii takes the block bx,y satisfying
((x+1)×p+y)mod i)=0.

3) Skew sampling: Similar to stripe sampling, but each Ii
skewly picks up a stripe alone the diagonal.

With the extracted Ii, OCSVM is invoked for each Ii. Next,
the concept of cluster validity index is introduced.

C. Cluster Validity Indices

Clustering validity is a measure for evaluating the goodness
of clustering results. This section contains the description of
three cluster validity indices that have been used.

1) Distance-based Index: The distance-based index is the
most popularly used function that minimizes the total distance
within cluster variation, which is defined as

DS =
k∑

i=1

∑
x∈Ci

d(x, xi) (4)

where xi denotes the centroid of the ith cluster, d(x, xi) is
the distance between the data point x and its nearest cluster
center. Thus, this index attempts to minimize the distance of
each data point from the center of the cluster to which the point
belongs. The optimal number k is chosen when the distance-
based index reaches its minimum.

2) Davies-Bouldin Index: The Davies-Bouldin index (DB-
index) is a function of the ratio of the sum of within-cluster
scatter to between-cluster separation. The scatter within the
ith-cluster and the distance between the i-th and j-th cluster
can be defined as

Si,q =

(
1

|Ci|
∑
x∈Ci

{‖x− xi‖q2}
)1/q

, (5)

xi =
1

|Ci|
∑
x∈Ci

x, (6)

and

dij,t = ‖xi − xj‖t =
{

p∑
s=1

|xis − xjs|t
}1/t

, (7)

where xi and |Ci| represent the centroid and the number of
elements in the i-th cluster, respectively.

We use Si,1, the average Euclidean distance of the vectors in
the i-th cluster to its centroid, in the proposed approach. dij,t
is the Minkowski distance of order t between the centroids
which characterize clusters Ci and Cj . Next, a term Ri,qt for
Ci is defined as

Ri,qt = max
j,j �=i

{
Si,q + Sj,q

dij,t

}
. (8)

Then the DB-index for k-clustering is defined as

DB =
1

k

k∑
i=1

Ri,qt, (9)

where k is the number of clusters. Since it is desirable for
the clusters to have the minimum possible similarity to each
other; therefore, the objective is to minimize the DB-index for
achieving proper clustering.

3) Xie-Beni Index: For hyper-spherical-shaped clustering
algorithms, the most used cluster validity proposed by Xie
and Beni is formulated as:

XB =

∑k
s=1

∑N
j=1 u

2
sj‖xj − xl‖2

N · minij‖xi − xj‖2 , (10)

where usj is the membership of the j-th point to the l-th
cluster, k is the number of clusters and N is the total number
of points in the data set. The value of xi represents the
center of the i-th cluster. In Eq.(10), the smaller the separation
validity function value is, the more probability there will be
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(a) Image-imgA (b) Image-imgB

Fig. 1. The original aerial images

redundant cluster representative in the existed representatives.
The optimal number k is then chosen when the XB-index
reaches its minimum.

Notice that these indices are not comparable since they
are in different basis. They are all as small, approaching to
0, as better. However, they may be pretty large and become
incomparable (e.g., �1). In order to make them quantitatively
comparable in the experiments, they are scaled into [0, 1] as

Scaled index =
1

(1+Index)
, (11)

where Index can be DS, DB, or XB. In Eq.(11), an index value
more approaching to 1 represents a better clustering result.

V. EXPERIMENTS

This section presents several experiments for demonstrating
the performance of the proposed method. An aerial image
segmented into either too few or too many clusters is both
less informative. In the experiments, the maximum number
MaxC of clusters is 8. an image segmented into 2 or MaxC of
clusters is in such cases. As stated in many image processing
literatures, the performance of image segmentation usually de-
pends on the clustering methods and the associated parameters.
It is also domain dependent. The three aerial images shown
in Figure 1 are taken from the public domain 1 and used as
the test bench. Each image is 128×128 in size. We include
libsvm[20] as part of the OCSVM engine. For parameters in
Eq.(1) and Eq.(3), throughout this paper ν = 0.05 meaning that
there are at most 5% of outliers in the training patterns and
q=0.25 for the RBF kernel function. Basic attributes such as
pixel’s location and color are used as features for clustering.
The cluster validity indices are normalized by Eq.(11) and
are used as the criterion to evaluate the number of clusters.
Currently, the OCSVM segmentation process is implemented
in C#. All experiments are conducted on a personal computer
equipped with a P4 2.0GHz processor and 512 MB memory
running Windows XP. The figures presented in Figure 2–
Figure 4 are the best results. Each figure is denoted by x/y/z
which means that the image x is segmented into z clusters
using y as the cluster validity index.

First, the sampling strategy for one-run of OCSVM is dis-
cussed. There are three sampling strategies, i.e., stripe, block,
and skew. As stated in Section IV-B, if all data belonging
to the same cluster are completely extracted from the original
image and used to train OCSVM, the best clustering result can

1http://www.texmaps.com/texmaps-free.html and http://www.usgs.gov/

(a) imgA/DS/8 (b) imgB/DS/8 (c) imgA/DB/2

(d) imgB/DB/7 (e) imgA/XB/4 (f) imgB/XB/8

Fig. 2. OCSVM using stripe partitioning

(a) imgA/DS/8 (b) imgB/DS/8 (c) imgA/DB/7

(d) imgB/DB/7 (e) imgA/XB/3 (f) imgB/XB/3

Fig. 3. OCSVM using block partitioning

(a) imgA/DS/6 (b) imgB/DS/6 (c) imgA/DB/7

(d) imgB/DB/8 (e) imgA/XB/3 (f) imgB/XB/3

Fig. 4. OCSVM using skew partitioning
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be obtained. Observe Figure 1, the distribution of data points
belonging to different areas in Figure 1(a) more concentrate
than that in Figure 1(b). That is, whatever a strategy selects a
set of data points from Figure 1(b) for OCSVM, the dataset
may contain various data points from different area so that
OCSVM can not produce a good cluster. Conversely, the
stripe and skew selecting strategies are useful for working on
Figure 1(a). Block sampling strategy degrades the performance
when blocks are finer-grained. In this experiment, the number
of blocks is 128×128. Finer-grained partitioning makes the
selected data points to have similar distributions as that in the
original image.

Next, the performance of the cluster validity indices is
presented. From the experimental results, DS-index intends
to guide the clustering mechanism to as many clusters as
possible. In subfigures (a)–(b) of Figure 2–Figure 4, imgA
and imgB are segmented into many clusters, where 4 out of 6
results are 8 clusters. It is reasonable, by referring to Eq.(4),
that the distance between two data points in smaller clusters
is smaller as well. An image segmented into many clusters
can offer many smaller clusters. DB-index and XB-index
consider advanced information and outperform than DS-index.
However, in these experiments, their performance is variable.
XB-index seems to intend to simplify the segmentation results,
while DB-index intend to figure out the details. From these
experimental results, it is found that the proposed approach
with XB-index can produce a spatially smooth class map
with a more distinctive configuration of the classes than the
approach with DB-index and DS-index. For example, we can
distinguish lands from the ocean. The contour of a river is
clearly recognized by the proposed approach by XB-index.
Observe subfigures (c)–(f) of Figure 2–Figure 4, 4 out of 6
results are 7 clusters in DB-index and 4 out of 6 results are 3
clusters in XB-index.

Each round of image segmentation stops when the indices
reach a local optima. In order to compare the effectiveness
of cluster validity indices, the values of these indices in all
possible settings of k are listed in Table I. From these values,
it is found that not all best results appear in the same settings.
However, the trends seem that most best results concentrated at
cases when stripe or skew partitioning is used. For example, 5
out of 7 column best values in imgA are from stripe and skew
partitioning. In both images, the best values of cluster validity
index are from skew partitioning. Interestingly, column best in
imgB appear at the case where block partitioning is applied.
The same reason mentioned previously about the distribution
of data points in imgB can explain this phenomenon. In all
images, XB-index seems to give OCSVM better performance
than the other two indices. 6 out of 6 best values come
from the cases where XB-index are applied. The XB-index
is considered more reliable than other cluster validity criteria
because it considers all the information in the partition and
adopts the concept of compactness-to-separation ratio. The
numerator of the XB-index is a compactness function that fits
the objective function of the clustering algorithm to reflect the
compactness of clusters. The denominator of the XB-index is
a separation function that measures the separation status of
clusters. However, these are not strict conclusions. There are

more factors to be considered.
It is well known that evaluating segmentation results and

comparing the related methods are not simple tasks. The better
evaluation is to compare the segmentation results with the
associated ground truth images. However, if the ground truth
images are unavailable, Haralick and Dhspito [21] provided
four declarative segmentation criteria for reference. They are
(1) segmented regions should be uniform and homogeneous,
(2) regions interiors should be simple and without many small
holes, (3) adjacent regions should have significantly difference,
and (4) boundaries of each region should be simple and
spatially accurate. According to these criteria, it may conclude
that the segmentation results shown in Figure 2–Figure 4 with
XB-index are better than those of obtained with other indices.

VI. CONCLUSION

In this paper, OCSVM is employed for the segmentation
of aerial images. The proposed segmentation approach can
automatically determine the proper number of clusters and
then a partitioning of the given image is done. From the
experimental results, the proposed approach with XB-index
can actually find the appropriate number of regions as well as
proper segmenting of an image.
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TABLE I
VALUES OF THE CLUSTER VALIDITY INDICES OF THE BEST SEGMENTATION RESULTS (NOTE: bold face: MAX. VALUE IN THE ROW; ( ): MAX. VALUE IN

THAT THE COLUMN k; *: MAX. VALUE IN THE SAMPLING STRATEGY; **: MAX. VALUE IN THE IMAGE OF ALL MEANS)

Image Method Index k=2 k=3 k=4 k=5 k=6 k=7 k=8
DS 0.87406 0.88130 0.88623 0.88959 0.88938 0.89122 0.89194

stripe DB 0.95431 0.95040 0.95255 0.95149 0.95224 0.95348 0.95284
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