Numerical Study of a Class of Nonlinear Partial Differential Equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Numerical Study of a Class of Nonlinear Partial Differential Equations

Authors: Kholod M. Abu-Alnaja

Abstract:

In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.

Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057867

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462

References:


[1] J. Yang, D. J. Benney, "Some properties of nonlinear wave systems," Stud. Appl. Math. vol.95, pp.111-139, 1996.
[2] J. Yang, "Classification of the solitary waves in coupled nonlinear Schrödinger equations," Physica D. vol.108,pp. 92-112, 1997.
[3] Y. Zhou, M. Wang and T. Miao, "The Periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations," Physics Letters, A 323,pp.77-88, 2004.
[4] D. S. Mashat, "A Simple algorithm for solitary-wave solutions of The Benjamin equation," Alex. Science Bulletin, vol.43, 2005.
[5] D. S. Mashat, and M. A. Al-Ssabaai," A Finite difference method for the Benjamin equation," Master's Degree in Science, 2006.
[6] M. S. Ismail, and M. A. Al-Johani, "Finite difference method for solving the coupled Korteweg-de vries equation," Master's Degree in Science, 2008.