Search results for: PLL jitter transfer function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3181

Search results for: PLL jitter transfer function

2731 Eigenvalues of Particle Bound in Single and Double Delta Function Potentials through Numerical Analysis

Authors: Edward Aris D. Fajardo, Hamdi Muhyuddin D. Barra

Abstract:

This study employs the use of the fourth order Numerov scheme to determine the eigenstates and eigenvalues of particles, electrons in particular, in single and double delta function potentials. For the single delta potential, it is found that the eigenstates could only be attained by using specific potential depths. The depth of the delta potential well has a value that varies depending on the delta strength. These depths are used for each well on the double delta function potential and the eigenvalues are determined. There are two bound states found in the computation, one with a symmetric eigenstate and another one which is antisymmetric.

Keywords: Double Delta Potential, Eigenstates, Eigenvalue, Numerov Method, Single Delta Potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026
2730 IEEE 802.11 b and g WLAN Propagation Model using Power Density Measurements at ESPOL

Authors: E. E. Mantilla, C. R. Reyes, B. G. Ramos

Abstract:

This paper describes the development of a WLAN propagation model, using Spectral Analyzer measurements. The signal is generated by two Access Points (APs) on the base floor at the administrative Communication School of ESPOL building. In general, users do not have a Q&S reference about a wireless network; however, this depends on the level signal as a function of frequency, distance and other path conditions between receiver and transmitter. Then, power density of the signal decrease as it propagates through space and data transfer rate is affected. This document evaluates and implements empirical mathematical formulation for the characterization of WLAN radio wave propagation on two aisles of the building base floor.

Keywords: frequency, Spectral Analyzer, transmitter, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2729 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi

Abstract:

An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.

Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3890
2728 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3762
2727 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube

Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan

Abstract:

We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.

Keywords: Newtonian, NUR factor, Brownian motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2726 A Simplified Solid Mechanical and Acoustic Model for Human Middle Ear

Authors: Adarsh Venkataraman Ganesan, Sundaram Swaminathan, Rama Jayaraj

Abstract:

Human middle-ear is the key component of the auditory system. Its function is to transfer the sound waves through the ear canal to provide sufficient stimulus to the fluids of the inner ear. Degradation of the ossicles that transmit these sound waves from the eardrum to the inner ear leads to hearing loss. This problem can be overcome by replacing one or more of these ossicles by middleear prosthesis. Designing such prosthesis requires a comprehensive knowledge of the biomechanics of the middle-ear. There are many finite element modeling approaches developed to understand the biomechanics of the middle ear. The available models in the literature, involve high computation time. In this paper, we propose a simplified model which provides a reasonably accurate result with much less computational time. Simulation results indicate a maximum sound pressure gain of 10 dB at 5500 Hz.

Keywords: Ear, Ossicles, COMSOL, Stapes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
2725 Analysis of Lightweight Register Hardware Threat

Authors: Yang Luo, Beibei Wang

Abstract:

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Keywords: Side-channel analysis, hardware threat, register transfer level, dynamic power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
2724 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
2723 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
2722 Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube

Authors: Mesbah. M. Salem, Mohamed. H. Elhsnawi, Saleh B. Mohamed

Abstract:

An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.

Keywords: Pressure drop, heat transfer, distilled water, R134a, micro-tube, laminar and turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3830
2721 Organization of the Purchasing Function for Innovation

Authors: Jasna Prester, Ivana Rašić Bakarić, Božidar Matijević

Abstract:

Innovations not only contribute to competitiveness of the company but have also positive effects on revenues. On average, product innovations account to 14 percent of companies’ sales. Innovation management has substantially changed during the last decade, because of growing reliance on external partners. As a consequence, a new task for purchasing arises, as firms need to understand which suppliers actually do have high potential contributing to the innovativeness of the firm and which do not. Proper organization of the purchasing function is important since for the majority of manufacturing companies deal with substantial material costs which pass through the purchasing function. In the past the purchasing function was largely seen as a transaction-oriented, clerical function but today purchasing is the intermediate with supply chain partners contributing to innovations, be it product or process innovations. Therefore, purchasing function has to be organized differently to enable firm innovation potential. However, innovations are inherently risky. There are behavioral risk (that some partner will take advantage of the other party), technological risk in terms of complexity of products and processes of manufacturing and incoming materials and finally market risks, which in fact judge the value of the innovation. These risks are investigated in this work. Specifically, technological risks which deal with complexity of the products, and processes will be investigated more thoroughly. Buying components or such high edge technologies necessities careful investigation of technical features and therefore is usually conducted by a team of experts. Therefore it is hypothesized that higher the technological risk, higher will be the centralization of the purchasing function as an interface with other supply chain members. Main contribution of this research lies is in the fact that analysis was performed on a large data set of 1493 companies, from 25 countries collected in the GMRG 4 survey. Most analyses of purchasing function are done by case study analysis of innovative firms. Therefore this study contributes with empirical evaluations that can be generalized.

Keywords: Purchasing function organization, innovation, technological risk, GMRG 4 survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3691
2720 Experiments and Modeling of Ion Exchange Resins for Nuclear Power Plants

Authors: Aurélie Mabrouk, Vincent Lagneau, Caroline De Dieuleveult, Martin Bachet, Hélène Schneider, Christophe Coquelet

Abstract:

Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work: column experiments and simulations. A software called OPTIPUR was developed, tested and used. The approach simulates the onedimensional reactive transport in porous medium with convectivedispersive transport between particles and diffusive transport within the boundary layer around the particles. The transfer limitation in the boundary layer is characterized by the mass transfer coefficient (MTC). The influences on MTC were measured experimentally. The variation of the inlet concentration does not influence the MTC; on the contrary of the Darcy velocity which influences. This is consistent with results obtained using the correlation of Dwivedi&Upadhyay. With the MTC, knowing the number of exchange site and the relative affinity, OPTIPUR can simulate the column outlet concentration versus time. Then, the duration of use of resins can be predicted in conditions of a binary exchange.

Keywords: ion exchange resin, mass transfer coefficient, modeling, OPTIPUR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
2719 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case

Authors: A. Selmi, A. Bisharat

Abstract:

Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.

Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, Spherical inclusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
2718 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
2717 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
2716 Pure Scalar Equilibria for Normal-Form Games

Authors: H. W. Corley

Abstract:

A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.

Keywords: Compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
2715 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
2714 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
2713 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: Forced convection, Square cylinder, nanofluid, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
2712 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
2711 Effect of Oral Administration of “Gadagi“ Tea on Liver Function in Rats

Authors: A. M. Gadanya, M. S. Sule, M. K. Atiku

Abstract:

Effect of oral administration of “Gadagi" tea on liver function was assessed on 50 healthy male albino rats which were grouped and administered with different doses(mg/kg) i.e low dose (380mg/kg, 415mg/kg, 365mg/kg, 315mg/kg for “sak", “sada" and “magani" respectively), standard dose ( 760mg/kg, 830mg/kg, 730mg/kg for “sak-, “sada" and “magani" respectively) and high dose (1500mg/kg, 1700mg/kg and 1460mg/kg for “sak--,"sada" and “magani" groups respectively) for a period of four weeks. Animals that were not administered with the tea constituted the control group. At the end of fourth week, the animals were sacrificed and their serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), albumin (ALB), and globulins (GLO) were determined. Mean serum ALT and ALP activities were significantly higher (P<0.05) in rats orally administered with high dose of “sak" and those administered with standard dose of “sada" than those of the control group, suggesting a probable impairment of liver function due to liver cytolysis.Mean serum AST, ALT and ALP activities were significantly lower (P<0.05) in rats that were orally administered with high dose of “magani" than that of the control group, suggesting a probable improvement in liver function (due to decrease in liver cytolysis). Mean serum TP, ALB and GLO levels were significantly higher (P<0.05) in rats that were orally administered with the various doses of“sak", “sada" and “magani" than those of the control group. This also suggests a probable improvement in the synthetic function of the liver.Thus, some dosages of “sak" and “sada could be hepatotoxic, whereas “magani" especially at the high dose administered could have pharmacologically positive effect on the liver of the rats.

Keywords: Gadagi" tea, Liver function, Oral, Rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
2710 Conjugate Heat Transfer in an Enclosure Containing a Polygon Object

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Conjugate natural convection in a differentially heated square enclosure containing a polygon shaped object is studied numerically in this article. The effect of various polygon types on the fluid flow and thermal performance of the enclosure is addressed for different thermal conductivities. The governing equations are modeled and solved numerically using the built-in finite element method of COMSOL software. It is found that the heat transfer rate remains stable by varying the polygon types.

Keywords: Natural convection, Polygon object, COMSOL

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2709 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Keywords: Three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
2708 Contaminant Transport Modeling Due to Thermal Diffusion Effects with the Effect of Biodegradation

Authors: Nirmala P. Ratchagar, S. Senthamilselvi

Abstract:

The heat and mass transfer characteristics of contaminants in groundwater subjected to a biodegradation reaction is analyzed by taking into account the thermal diffusion (Soret) effects. This phenomenon is modulated mathematically by a system of partial differential equations which govern the motion of fluid (groundwater) and solid (contaminants) particles. The numerical results are presented graphically for different values of the parameters entering into the problem on the velocity profiles of fluid, contaminants, temperature and concentration profile.

Keywords: Heat and mass transfer, Soret number, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
2707 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel

Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray

Abstract:

The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.

Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
2706 Effect of Mass Transfer on MHD Mixed Convective Flow along Inclined Porous Plate with Thermodiffusion

Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury

Abstract:

The effect of mass transfer on MHD mixed convective flow along inclined porous plate with thermodiffusion have been analyzed on the basis of boundary layer approximations. The fluid is assumed to be incompressible and dense, and a uniform magnetic field is applied normal to the direction of the flow. A Similarity transformation is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. The behavior of velocity, temperature, concentration, local skin-friction, local Nusselt number and local Sherwood number for different values of parameters have been computed and the results are presented graphically, and analyzed thereafter. The validity of the numerical methodology and the results are questioned by comparing the findings obtained for some specific cases with those available in the literature, and a comparatively good agreement is reached.

Keywords: Mass transfer, inclined porous plate, MHD, mixed convection, thermodiffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
2705 Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria

Authors: Sayed Ahmed E. Sayed Ahmed, Emad Z. Ibrahiem, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: Wing-shaped tubes, Cross-flow cooling, Staggered arrangement, and CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
2704 The Phatic Function and the Socializing Element of Personal Blogs

Authors: Emelia Noronha, Milind Malshe

Abstract:

The phatic function of communication is a vital element of any conversation. This research paper looks into this function with respect to personal blogs maintained by Indian bloggers. This paper is a study into the phenomenon of phatic communication maintained by bloggers through their blogs. Based on a linguistic analysis of the posts of twenty eight Indian bloggers, writing in English, studied over a period of three years, the study indicates that though the blogging phenomenon is not conversational in the same manner as face-to-face communication, it does make ample provision for feedback that is conversational in nature. Ordinary day to day offline conversations use conventionalized phatic utterances; those on the social media are in a perpetual mode of innovation and experimentation in order to sustain contact with its readers. These innovative methods and means are the focus of this study. Though the personal blogger aims to chronicle his/her personal life through the blog, the socializing function is crucial to these bloggers. In comparison to the western personal blogs which focus on the presentation of the ‘bounded individual self’, we find Indian personal bloggers engage in the presentation of their ‘social selves’. These bloggers yearn to reach out to the readers on the internet and the phatic function serves to initiate, sustain and renew social ties on the blogosphere thereby consolidating the social network of readers and bloggers.

Keywords: Personal blogs, phatic, social-selves, blog readers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2703 Process-Oriented Learning Requirements for Employees and for Organizations

Authors: Richard Pircher, Lukas Zenk, Hanna Risku

Abstract:

Using activity theory, organisational theory and didactics as theoretical foundations, a comprehensive model of the organisational dimensions relevant for learning and knowledge transfer will be developed. In a second step, a Learning Assessment Guideline will be elaborated. This guideline will be designed to permit a targeted analysis of organisations to identify the status quo in those areas crucial to the implementation of learning and knowledge transfer. In addition, this self-analysis tool will enable learning managers to select adequate didactic models for e- and blended learning. As part of the European Integrated Project "Process-oriented Learning and Information Exchange" (PROLIX), this model of organisational prerequisites for learning and knowledge transfer will be empirically tested in four profit and non-profit organisations in Great Britain, Germany and France (to be finalized in autumn 2006). The findings concern not only the capability of the model of organisational dimensions, but also the predominant perceptions of and obstacles to learning in organisations.

Keywords: Activity theory, knowledge management organisational theory, "Process-oriented Learning and Information Exchange" (PROLIX).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2702 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263