WASET
	%0 Journal Article
	%A R. Blythman and  N. Jeffers and  T. Persoons and  D. B. Murray
	%D 2016
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 110, 2016
	%T Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel
	%U https://publications.waset.org/pdf/10003482
	%V 110
	%X The exploitation of flow pulsation in micro- and
mini-channels is a potentially useful technique for enhancing cooling
of high-end photonics and electronics systems. It is thought that
pulsation alters the thickness of the hydrodynamic and thermal
boundary layers, and hence affects the overall thermal resistance
of the heat sink. Although the fluid mechanics and heat transfer
are inextricably linked, it can be useful to decouple the parameters
to better understand the mechanisms underlying any heat transfer
enhancement. Using two-dimensional, two-component particle image
velocimetry, the current work intends to characterize the heat transfer
mechanisms in pulsating flow with a mean Reynolds number of
48 by experimentally quantifying the hydrodynamics of a generic
liquid-cooled channel geometry. Flows circulated through the test
section by a gear pump are modulated using a controller to achieve
sinusoidal flow pulsations with Womersley numbers of 7.45 and
2.36 and an amplitude ratio of 0.75. It is found that the transient
characteristics of the measured velocity profiles are dependent on the
speed of oscillation, in accordance with the analytical solution for
flow in a rectangular channel. A large velocity overshoot is observed
close to the wall at high frequencies, resulting from the interaction
of near-wall viscous stresses and inertial effects of the main fluid
body. The steep velocity gradients at the wall are indicative of
augmented heat transfer, although the local flow reversal may reduce
the upstream temperature difference in heat transfer applications.
While unsteady effects remain evident at the lower frequency, the
annular effect subsides and retreats from the wall. The shear rate at
the wall is increased during the accelerating half-cycle and decreased
during deceleration compared to steady flow, suggesting that the flow
may experience both enhanced and diminished heat transfer during
a single period. Hence, the thickness of the hydrodynamic boundary
layer is reduced for positively moving flow during one half of the
pulsation cycle at the investigated frequencies. It is expected that the
size of the thermal boundary layer is similarly reduced during the
cycle, leading to intervals of heat transfer enhancement.
	%P 243 - 249