WASET
	%0 Journal Article
	%A Diptendu Das and  Vikas Kumar Rahi and  V. A. Juvekar and  R. Bhattacharya
	%D 2013
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 78, 2013
	%T Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane
	%U https://publications.waset.org/pdf/13896
	%V 78
	%X Extraction of Fe(III) from aqueous solution using Trin-
butyl Phosphate (TBP) as carrier needs a highly acidic medium
(>6N) as it favours formation of chelating complex FeCl3.TBP.
Similarly, stripping of Iron(III) from loaded organic solvents requires
neutral pH or alkaline medium to dissociate the same complex. It is
observed that TBP co-extracts acids along with metal, which causes
reversal of driving force of extraction and iron(III) is re-extracted
back from the strip phase into the feed phase during Liquid Emulsion
Membrane (LEM) pertraction. Therefore, rate of extraction of
different mineral acids (HCl, HNO3, H2SO4) using TBP with and
without presence of metal Fe(III) was examined. It is revealed that in
presence of metal acid extraction is enhanced. Determination of mass
transfer coefficient of both acid and metal extraction was performed
by using Bulk Liquid Membrane (BLM). The average mass transfer
coefficient was obtained by fitting the derived model equation with
experimentally obtained data. The mass transfer coefficient of the
mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl =
6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of
the above mentioned acids between aqueous feed solution and a
solution of tri-n-butyl-phosphate (TBP) in organic solvents have been
investigated. The stoichiometry of acid extraction reveals the
formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes.
Moreover, extraction of Iron(III) by TBP in HCl aqueous solution
forms complex FeCl3.TBP.2HCl while in HNO3 medium forms
complex 3FeCl3.TBP.2HNO3
	%P 315 - 322