
 
Abstract—A scalar equilibrium (SE) is an alternative type of 

equilibrium in pure strategies for an n-person normal-form game G. It 
is defined using optimization techniques to obtain a pure strategy for 
each player of G by maximizing an appropriate utility function over 
the acceptable joint actions. The players’ actions are determined by the 
choice of the utility function. Such a utility function could be agreed 
upon by the players or chosen by an arbitrator. An SE is an equilibrium 
since no players of G can increase the value of this utility function by 
changing their strategies. SEs are formally defined, and examples are 
given. In a greedy SE, the goal is to assign actions to the players giving 
them the largest individual payoffs jointly possible. In a weighted SE, 
each player is assigned weights modeling the degree to which he helps 
every player, including himself, achieve as large a payoff as jointly 
possible. In a compromise SE, each player wants a fair payoff for a 
reasonable interpretation of fairness. In a parity SE, the players want 
their payoffs to be as nearly equal as jointly possible. Finally, a 
satisficing SE achieves a personal target payoff value for each player. 
The vector payoffs associated with each of these SEs are shown to be 
Pareto optimal among all such acceptable vectors, as well as 
computationally tractable. 

 
Keywords—Compromise equilibrium, greedy equilibrium, 

normal-form game, parity equilibrium, pure strategies, satisficing 
equilibrium, scalar equilibria, utility function, weighted equilibrium. 

I. INTRODUCTION 

AME theory is the study of strategic interactions among 
rational decision makers called players, whose decisions 

affect each other. Its systematic development began with [1], 
which described both noncooperative and cooperative games. 
Modern game theory is predominantly noncooperative [2], [3]. 
The players are assumed selfish, and the fundamental solution 
concept is the Nash equilibrium [4]-[6]. Its principal use is 
normative [7]-[9], i.e., to recommend decisions that the players 
should make.  

In this paper, we consider n-person, one-shot, normal-form 
games. All payoffs are measured in the same units of some 
transferable utility allowing side payments among the players. 
The players are assumed rational in the sense that each player 
makes decisions consistent with a stated objective. Moreover, 
for any game, all players are assumed to have the same 
objective. For example, they may wish to maximize their 
individual payoffs.  

The games studied here have both cooperative and 
noncooperative aspects. Such games are sometimes called 
semi-cooperative [10]-[18]. The noncooperative aspect is that 
each player tries to achieve his personal objective. The 
cooperative one is that the players either (i) agree on an 
appropriate utility function 𝑻 for evaluating each possible joint 
pure strategy of a game or else (ii) let an arbitrator choose it. 

 
H.W. Corley is a co-founder and current member of the Center On Stochastic 

Modeling, Optimization, & Statistics (COSMOS), The University of Texas at 

Various utility functions 𝑻 are presented for modeling player 
objectives. A joint pure strategy that maximizes 𝑻 over the set 
of acceptable joint actions is deemed optimal for the players, 
and an SE is defined as such an action profile. An SE is called 
an equilibrium since no players can increase the value of 𝑻 by 
changing their strategies. 

The purpose of this paper is to reduce games to the selection 
of 𝑻 that would determine the players’ actions. Ties could be 
broken with secondary criteria. The SE approach addresses five 
problematic areas of noncooperative game theory.  
(1) An SE always exists in pure strategies, which is not the 

case for both the Nash Equilibrium (NE) [2]-[6] and some 
other equilibria [19], [20].  

(2) Mixed strategies are known to be difficult to calculate, 
interpret, and implement as noted in [1], [4], [18], [21]-
[24], except possibly in repeated games or resource 
allocation games [25].  

(3) SEs are not restricted to the strictly selfish motivation of 
the individual players as assumed for an NE.  

(4) The SEs presented here are Pareto maxima among the 
acceptable set of vector payoffs, while NEs, for example, 
are frequently not. Pareto optimality is a desirable property 
for a solution concept [26], [27]. 

(5) For games with multiple pure equilibria, the value of an 
appropriate 𝑇 could be calculated for each equilibrium and 
used as a secondary selection  criterion or refinement 
mechanism. An equilibrium with the maximum value of 𝑇 
could then be selected. It would be an SE for the set of 
original multiple pure equilibria. 

In Section II of this paper, some preliminary background is 
summarized. In Section III we define a greedy SE to model the 
situation where each player is motivated by selfishness as in an 
NE. In Section IV, we develop a general weighted SE that 
models the degree to which each player supports every player, 
including himself, in achieving as large a payoff as jointly 
possible. In Section V, we present a compromise SE to model 
fairness. In Section VI, we consider a parity SE giving the 
players approximately equal payoffs. In Section VII, we define 
a satisficing SE in which each player achieves a personal target 
payoff value. Each of these SEs is shown to be Pareto optimal 
and computationally tractable, and examples are presented. In 
Section VIII, some game theoretic axioms are stated, and the 
ones satisfied by the SEs of this paper are noted. Conclusions 
are offered in Section IX. 

II. PRELIMINARIES 

We consider a standard n-person, noncooperative game in 
normal form. Let 𝐺 ൌ 〈𝐼, ሺ𝑆௜ሻ௜∈ூ, ሺ𝑢௜ሻ௜∈ூ〉 denote such a game, 
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where 𝐼 ൌ ሼ1, . . . , 𝑛ሽ is the set of players and 𝑆௜ 
is the finite set 

of 𝑚௜ pure strategies, or actions, for player 𝑖. For an action 
profile 𝑠 ൌ ሺ𝑠ଵ, . . . , 𝑠௡ሻ ∈ 𝑆 ൌ ∏ 𝑆௜௜∈ூ , 𝑢௜ሺ𝑠ሻ is utility of player 
𝑖; and the payoff matrix consists of the n-tuples 𝑢ሺ𝑠ሻ ൌ
ሺ𝑢ଵሺ𝑠ሻ, . . . , 𝑢௡ሺ𝑠ሻሻ ordered in the usual way. Assume that 𝐺 has 
transferable utilities [28] so that players obtain equal utilities 
from equal payoffs. We refer to this property as assumption TU 
for 𝐺. 

For subsequent reference, the Nash equilibrium (NE) and the 
more recent Berge equilibrium (BE) [19], [29], [30] are next 
defined for pure strategies using the standard notation 𝑠ି௜ for 
an incomplete strategy profile. In an NE of Definition 1, every 
player has a pure strategy that maximizes his own payoff for the 
other 𝑛-1 players’ strategies. The opposite situation occurs in a 
BE of Definition 2, where every 𝑛-1 players have pure 
strategies that maximize the remaining player’s payoff for his 
strategy. An NE models player selfishness, while a BE models 
mutual support or altruism.  
Definition 1 (NE). The action profile 𝑠∗ is an NE for 𝐺 if and 

only if **( ) max ( , ),  .
i i

i i i i
Ss

u s u s s i I
    

Definition 2 (BE). The action profile 𝑠∗ is a BE for 𝐺 if and 

only if * *( ) max ( , ),  .
i i

i i i is S
s s i Iu u s

 
    

We also define the security level of a player since this 
concept may have implications in the cooperative aspect of the 
games considered here.  
Definition 3. An action profile 𝑠̂ is a security profile for 𝐺 if 
and only if arg max min ( , ),  .ˆ

i
i ii i

i i is Ss S
i Is u s s

 


    For each 

player 𝑖 ∈ 𝐼, 𝐿௜ ൌ max
௦೔∈ௌ೔

min
௦ష೔∈ௌష೔

𝑢௜ሺ𝑠௜, 𝑠ି௜ሻ is the associated 

security level and 𝑠̂௜ is an associated security action. 
The value 𝐿௜ is the least payoff that player 𝑖 can be 

guaranteed to receive from his action in the game, regardless of 
what the other players’ actions are. It is possible that 𝑢௜ሺ𝑠̂ሻ ൐
𝐿௜ since 𝑠̂ି௜ is not necessarily a worst response to 𝑠̂௜ in a security 
profile. A player could justifiably not agree to an action profile 
in a negotiation for which he receives less than 𝐿௜. We denote 
the set of security profiles for 𝐺 by 𝛬 ൌ ሼ𝑠 ∈ 𝑆: 𝑢௜ሺ𝑠ሻ ൒ 𝐿௜ሽ, 
which is nonempty by definition. Reference [27], for example, 
shows that any pure NE 𝑠∗ for 𝐺 is a member of 𝛬.  

We now call 𝛤 ൌ 〈𝐺, 𝛺, 𝑇〉 the n-person, pure-strategy, 
normal-form, semi-cooperative game associated with the game 
𝐺. In particular, 𝛺 is the nonempty and finite set of feasible 
action profiles 𝑠 ൌ ሺ𝑠ଵ, . . . , 𝑠௡ሻ acceptable to the n players or 
arbitrator. These parties may require that 𝛺 ⊆ 𝛬. In addition, 
𝑇: 𝑢ሺ𝛺ሻ → 𝑅ଵ is a utility function agreed upon by the players 
or stipulated by an arbitrator according to the situation modeled 
by 𝛤. 

An SE for the game 𝛤 is an action profile 𝑠∗ ∈ 𝛺 determined 
by a utility function 𝑇: 𝑢ሺ𝛺ሻ → 𝑅ଵ on the n-tuples 𝑢ሺ𝑠ሻ ൌ
ሺ𝑢ଵሺ𝑠ሻ, . . . , 𝑢௡ሺ𝑠ሻሻ. 𝑇 induces a complete and transitive 
preference relation ൑் on 𝑢ሺ𝛺ሻ as described in [28]. In other 
words, for all 𝑠ᇱ, 𝑠ᇱᇱ ∈ 𝛺, 
(i) 𝑢ሺ𝑠ᇱሻ ൏் 𝑢ሺ𝑠ᇱᇱሻ if 𝑇ሾ𝑢ሺ𝑠ᇱሻሿ ൏ 𝑇ሾ𝑢ሺ𝑠ᇱᇱሻሿ, 
(ii) 𝑢ሺ𝑠ᇱሻ ൌ் 𝑢ሺ𝑠ᇱᇱሻ if 𝑇ሾ𝑢ሺ𝑠ᇱሻሿ ൌ 𝑇ሾ𝑢ሺ𝑠ᇱᇱሻሿ and the players 

are indifferent between 𝑠ᇱ and 𝑠ᇱᇱ, 
(iii) 𝑢ሺ𝑠ᇱሻ ൑் 𝑢ሺ𝑠ᇱᇱሻ if either 𝑢ሺ𝑠ᇱሻ ൏் 𝑢ሺ𝑠ᇱᇱሻ or 

𝑢ሺ𝑠ᇱሻ ൌ் 𝑢ሺ𝑠ᇱᇱሻ. 
In particular, an SE 𝑠∗ is an action profile that maximizes 

𝑇ሾ𝑢ሺ𝑠ሻሿ among the finite number of joint strategies in 𝛺.. If 𝛤 
has multiple SEs resulting from ties in the maximization, it is 
assumed that a negotiation among the players, similar to the one 
stipulating 𝑇 and 𝛺, will choose a single 𝑠∗. If 𝛤 is arbitrated, 
the arbitrator will select 𝑇, 𝛺, and a single SE. The following 
definition summarizes the previous discussion. 
Definition 4 (SE). Let 𝑇: 𝑢ሺ𝛺ሻ → 𝑅ଵ be the utility function for 
a semi-cooperative game 𝛤 ൌ 〈𝐺, 𝛺, 𝑇〉. The joint action profile 
𝑠∗ ∈ 𝛺 is an SE for 𝛤 if and only if 𝑇ሾ𝑢ሺ𝑠ሻሿ ൑ 𝑇ሾ𝑢ሺ𝑠∗ሻሿ for all 
𝑠 ∈ 𝛺. Equivalently, 𝑠∗ is an SE if and only if 𝑠∗ maximizes the 
composition 𝑇 ∘ 𝑢 over 𝛺. 

Note again that the SE approach could be used to choose a 
single equilibrium for G  from multiple ones. For example, the 
players or arbitrator could let . be the set of NEs for G  and 
select an appropriate .T  An NE could then be selected that is 
an SE for this 𝛺.  

We next establish that an SE 𝑠∗ for 𝛤 will be Pareto maximal 
over 𝛺 for a significant class of 𝑇. The following definitions are 
needed. 
Definition 5. For the game 𝛤, the action profile 𝑠ᇱᇱ ∈ 𝛺 

dominates 𝑠ᇱ ∈ 𝛺 if and only if ( ) ( ),  ,i iu s u s i I     and 

𝑢௝ሺ𝑠ᇱሻ ൏ 𝑢௝ሺ𝑠ᇱᇱሻ for some 𝑗 ∈ 𝐼. An action profile 𝑠∗ ∈ 𝛺 is a 
Pareto maximum for 𝛤 if 𝑠∗ is not dominated by any 𝑠 ∈ 𝛺. A 
Pareto maximum 𝑠∗ is said to be Pareto maximal. 
Definition 6. For the game 𝛤, the utility function 𝑇: 𝑢ሺ𝛺ሻ → 𝑅ଵ 
is said to be strictly increasing on 𝑢ሺ𝛺ሻ if and only if 
𝑇ሾ𝑢ሺ𝑠ᇱሻሿ ൏ 𝑇ሾ𝑢ሺ𝑠ᇱᇱሻሿ for any 𝑠ᇱ, 𝑠ᇱᇱ ∈ 𝛺 for which 𝑠ᇱᇱ 
dominates 𝑠ᇱ. 

An immediate consequence of Definitions 5 and 6 is the next 
result. 
Lemma 1. If 𝑠∗ is an SE for 𝛤 and if 𝑇 is strictly increasing on 
𝑢ሺ𝛺ሻ, then 𝑠∗ is Pareto maximal for 𝛤. 
Proof. Let 𝑠∗ ∈ 𝛺 be an SE for 𝛤. We prove the contrapositive. 
If 𝑠∗ is not a Pareto maximum, there exists 𝑠ᇱ ∈ 𝛺 that 
dominates 𝑠∗. But since 𝑇 is strictly increasing, it follows from 
Definition 5 that 𝑇ሾ𝑢ሺ𝑠∗ሻሿ ൏ 𝑇ሾ𝑢ሺ𝑠ᇱሻሿ. Thus 𝑠∗ is not an SE for 
𝛤 to establish the result. ■ 

III. GREEDY SCALAR EQUILIBRIUM 

In this section it is assumed that each player of a game G is 
greedy and wants a payoff as high as jointly possible. A greedy 
scalar equilibrium (GSE) attempts to achieve this goal as a 
global maximum over all action profiles in 𝛺, as opposed to an 
NE, which does so only locally for each player, as described in 
Definition 1. For the n-person, normal-form game G  with set 
of feasible action profiles 𝛺, let 𝑀௜ ൌ max

௦∈ఆ
𝑢௜ሺ𝑠ሻ and consider 

the utility function 𝑇௚: 𝑢ሺ𝛺ሻ → 𝑅ଵ for which 
  

𝑇௚ሾ𝑢ሺ𝑠ሻሿ ൌ ෑ
ଵ

ெ೔ି௨೔ሺ௦ሻାଵ௜∈ூ
, 𝑠 ∈ 𝛺      (1) 
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Because of assumption TU on 𝐺, the denominators 𝑀௜ െ
𝑢௜ሺ𝑠ሻ ൅ 1 in (1) are comparable. The number 1 in the 
denominators prevents a division by 0 if any 𝑢௜ሺ𝑠ሻ ൌ 𝑀௜, so 
𝑇௚ሾ𝑢ሺ𝑠ሻሿ is nonnegative and finite on 𝛺. 
Definition 7 (GSE). The pure strategy profile 𝑠∗ is a GSE for 
𝛤 if and only if 𝑠∗ maximizes the utility function 𝑇௚ሾ𝑢ሺ𝑠ሻሿ over 
𝛺. 

From Definition 7, a GSE always exists since 𝛺 is a 
nonempty finite set. However, a pure NE modeling player 
selfishness may not. Moreover, from (1), it follows that 0 ൏
𝑇௚ሾ𝑢ሺ𝑠ሻሿ ൑ 1 for all 𝑠 ∈ 𝛺. Maximizing 𝑇௚ሾ𝑢ሺ𝑠ሻሿ over 𝛺 
requires that each 𝑢௜ሺ𝑠∗ሻ be as close to 𝑀௜ as jointly possible 
using (1). This maximization represents a discrete version of the 

maximization of 𝑓ሺ𝑥ଵ, . . . , 𝑥௡ሻ ൌ ෑ
ଵ

௫೔ାଵ௜∈ூ
 over the region 

𝑥௜ ൒ 0, ∀𝑖 ∈ 𝐼. In the continuous version, 
డ௙

డ௫೔
൏ 0, ∀𝑖 ∈ 𝐼, over 

the feasible region, so the maximum is the point 𝑥௜ ൌ 0, ∀𝑖 ∈ 𝐼. 
We now establish that a GSE is a Pareto maximum. 
Result 1. If 𝑠∗ is a GSE for 𝛤, then 𝑠∗ is Pareto maximal for 𝛤. 
Proof. By Lemma 1, it suffices to show that 𝑇௚: 𝑢ሺ𝛺ሻ → 𝑅ଵ is 

strictly increasing on 𝑢ሺ𝛺ሻ. Let 𝑠ᇱ, 𝑠ᇱᇱ ∈ 𝑆 be pure strategies 
such that 𝑠ᇱᇱ dominates 𝑠ᇱ. Thus 
 

1 1
,

( ) 1 ( ) 1
           0 ,

i i i i

i I
M u M us s


    

   

 
and 

0 ൏
1

𝑀௝ െ 𝑢௝ሺ𝑠ᇱሻ ൅ 1
൏

1
𝑀௝ െ 𝑢௝ሺ𝑠ᇱᇱሻ ൅ 1

  

 
for some .j I  Since these fractions are all positive, 

  

1 1

( ) 1 ( ) 1
[ ( )] [ ( )]. 

i ii i i i

g g
I IM u M us s

T u T us s
     

      

 

Thus gT  is strictly increasing on  .u   ■ 

A special case of Result 1 is the following corollary.  

Corollary 1. If 𝑠∗ is a GSE for 𝛤, then 𝑠∗ is not dominated by 
any pure NE for 𝛤. 

On the other hand, the next example shows that a GSE for 𝛤 
can dominate a pure NE for 𝛤. Moreover, Example 1 and 
Corollary 1 suggest that a GSE may sometimes model player 
selfishness better than a pure NE.  
Example 1. Consider the two-person game G with the 3 3
payoff matrix of Table I, where ) :({ , 1, 2, 3}.,i jS i ja b 

The security levels 
1

2L  and 
2

1,L  so .S   

Immediately from Table I, 
1 7M  and 

2 6.M   We calculate 

the greedy scalar matrix for Table I to give the GSE 
corresponding to the bold underlined number in Table II. 

From Tables I and II, the unique GSE for  is 
3 3( , )a b with 

payoff vector  6, 6 .  The two pure NEs are 
1 1( , )a b  and 

2 3( , )a b  with payoff vectors  3, 4 and  7, 4 ,  respectively, 

while the two BEs are 
1 1( , )a b  and 

3 3( , )a b with payoff vectors 

 3, 4  and  6, 6 ,  respectively. This example illustrates that a 

GSE for  is not necessarily an NE and vice versa. Moreover, 
the GSE 

3 3( , )a b  dominates the NE 
1 1( , ).a b  There is also a BE 

that is the unique GSE. Finally, suppose that the payoff for 

3 3( , )a b was changed to (6,5) and Table II was recalculated. 

Then [( ] 0.2500,6, 5)gT  3 3( , )a b would not be a GSE, and no BE 

would be a GSE and vice versa.  
 

TABLE I 
PAYOFF MATRIX FOR EXAMPLE 1 

 
Player 2 

1b  2b  3b  

Player 1

1a (3,4) (2,2) (2,1) 

2a (2,3) (7,1) (7,4) 

3a (2,1) (5,6) (6,6) 

 
TABLE II 

SCALAR MATRIX FOR EXAMPLE 1 

 
Player 2 

1b  2b  3b  

Player 1

1a  0.0667 0.0333 0.0278

2a  0.0417 0.1667 0.3333

3a  0.0278 0.3333 0.5000

 
TABLE III 

PAYOFF MATRIX FOR EXAMPLE 2 

 

Player 2 

1b  

(Defect) 
2b  

(Cooperate)

Player 1

1a  

(Defect)
(1,1) (5,0) 

2a  

(Cooperate) 
(0,5) (3,3) 

 
TABLE IV 

SCALAR MATRIX FOR EXAMPLE 2 
 Player 2  

1b  

(Defect) 
2b  

(Cooperate)

Player 1

1a  

(Defect)
0.1111   

2a  

(Cooperate) 
  1 

 

Example 2. Consider now the classic two-person Prisoner’s 
Dilemma (PD) [31] game G with the payoff matrix of Table III. 
The associated greedy scalar matrix for  is shown in Table IV. 
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In this case, 
1

1L  and 
2

1,L  so 
1 1 2 2( , ), ( , ){ }.a b a b  The 

symbol  denotes that the associated strategy profile is not in 

. Then 2 2( , )a b is the only GSE. It is not an NE but is a BE. 

Thus, in this semi-cooperative PD game, the greedy decision is 
also mutually supportive. 
Example 3. Let Table V be the payoff matrix of a Chicken 
game G  in which two countries are involved in nuclear 
brinkmanship. The Straight pure strategy involves launching 
nuclear missiles, while the Swerve pure strategy avoids doing 

so. In this example, 
1 2

2,L L   but we choose to ignore 

security level considerations here. Thus .S  Table VI gives 

the greedy scalar matrix of . The pure NEs are 
1 2

( , )a b and 

2 1
( , ),a b  which are also the only GSEs. The strategy pair 

1 1
( , )a b  

is a BE. The greedy decision is to have one player launch a 

missile and the other not. There is a tie between 
1 2

( , )a b and 

2 1
( , ),a b but it is unlikely that either of the tied GSEs would be 

acceptable to both countries or to an arbiter.  
 

TABLE V 
PAYOFF MATRIX FOR EXAMPLE 3 

 Player 2 

1b  

(Swerve) 
2b  

(Straight) 

Player 1 

1a  

(Swerve) 
(0,0) (-2,2) 

2a  

(Straight) 
(2,-2) (-3,-3) 

 
TABLE VI 

SCALAR MATRIX FOR EXAMPLE 3 
 Player 2 

1b  

(Swerve) 
2b  

(Straight) 

Player 1 

1a  

(Swerve) 
0.1111 0.2000 

2a  

(Straight) 
0.2000 0.0278 

 

Computational Procedure 1. An algorithm is now presented 
for finding the nonempty set of GSEs for   by maximizing 

[ ( )]gT u s over . .     

Step1. Enumerate the s S  (i.e., the cells of the payoff matrix) 
as 1,..., ,j

j I

m

  and let Q  be a positive number much 

larger than any ( )iu s  for the matrix. Read a single 

player’s payoff at a time from each cell in the order 
1,..., .n  The length of the input is 

j
j I

N n m


   numbers. 

As these numbers are read, if any ( ) ,i iu s L  set

( )i Qu s   so that s   and s cannot be a GSE. After 

all cells have been read and all replacements have been 
made, every action profile .s will have at least one 

( )iu s  with value .Q  Moreover, every n number from 

the beginning of the input list represents an n-tuple 

1( ( ), ..., ( ))nu s u s  for some .s S   

Step2. For ,i I   compute ),max (i is
M su


  which is the 

maximum of the individual input numbers 

, , 2 , ..., ( ,1)
j

j I

i i n i n i n m


     one or more of which 

have value at least .iL  

Step3. For each of the possible 
j

j I

m

 cells, i.e., joint actions 

s S , compute 
1

[ ( )]
( ) 1

. 
i ii

g
I

T v s
M u s


 

  

Step4. Find the action profiles * Ss   that maximize [ ( )]gT u s

in Step 3.  
We now show that the worst-case time complexity of 

Computational Procedure 1 is linear in the input data. We use 
the fact that in the Random Access Machine model of [32], each 
elementary operation such as an addition, multiplication, 
replacement, and if statement is considered to take a single time 
step.  
Result 2. The worst-case time complexity for obtaining all 
GSEs for  is ( )O N for ,j

j I

N n m


  which is the number of 

individual player payoffs in the payoff matrix. i.e., the input 
data for the game. 
Proof. It suffices to consider the case where , ,im M i I    so 

that the payoff matrix of G  has nM   cells and nMn  player 
payoffs. The maximum possible number of replacements in the 

Step 1 is 1nMn  with time complexity ).(
nO nM  Finding all the 

n maxima iM in Step 2 has complexity )(O nM as established by 

Blum et al. [33]. With all iM computed, finding each term of 

the product in Step 3 for a given s S  takes 3n time steps. But 

there are nM  joint actions s S  and thus 1nM 
multiplications. Hence, determining the product in Step 3 for 

each s S  has complexity )( .
n

MnO  Next finding the GSEs by 

taking the maximum in Step 4 over all s S  has complexity 

).(
nO M  It follows that all GSEs can be obtained in 

) ) ) ),( ( ( (
n n nO nM O nM O nM O M    which is ),( nO nM   to 

establish the result. ■ 
Comparing Result 2 for GSEs to the computation of other 

pure equilibria, we note that the problem of determining if pure 
NEs exist for a normal-form game and, if so, finding them is 
also ( )O N as shown by [34]. A similar result holds for BEs 

[35]. However, finding a mixed NE is a PPAD-complete 
problem [36], a different type of complexity than NP-
completeness but still a compelling argument for computational 
intractability using current approaches or computers. 
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It should be noted that a mixed GSE (or any SE) can be 
defined. However, this approach will not be considered here. A 
mixed GSE would assign a probability ( )s to each possible 

action profile s S instead of a probability j to the event that 

a particular player chooses his jth pure strategy, as in the case 

of a standard mixed strategy. For example, an optimal mixed 
GSE * would maximize the resulting expected [ ( )]gT u s  and 

solve the following linear program in 
j

j I

m

 variables: 

 

  
( )

1
maximize [ ]

( ) 1
,g

i I is S i
T s

M u s
 



 
  

   
  

 
where ( ) 0,  ( ) 1., and 

s S

s s S s 


     

IV. WEIGHTED SCALAR EQUILIBRIUM 

We now generalize the GSE, which models the selfishness of 
the pure NE. The weighted scalar equilibrium (WSE) of this 
section can also model the mutual support or altruism of the 
pure BE, as well as the degree to which any player contributes 
part of his own payoff to another player for some reason. The 
idea for the WSE comes from the fact that a BE for a two-player 

game 1G  is simply an NE for the two-player game 2G  with a 

payoff matrix obtained by interchanging the payoffs of the two 

players of 1.G  This payoff matrix for 2G is called the swap 

matrix [37] of the original payoff matrix for 1.G  In other words, 

for the game 2G with the swap payoff matrix, player 1 plays 

selfishly for player 2 and vice versa. For ,s S  any payoff 

vector 
1 2,( ) ( ))(u s u s of the original payoff matrix for 1G  could be 

written in the swap payoff matrix for 2G  as the vector 

11 12 21 221 2 1 2,( ),( ) ( ) ( ) ( )u s u s u s u s      where the scalar 

coefficients , 1, 2,,ij i j   have values 11 22 0    and 

12 21 1.    

More generally, for an arbitrary G  and ,s S  the payoff 

vector 
1 , , )( ( ) ( )nu s u s of G could be replaced by  

 

           
1 1

( ) ( ) ,, ,  ( )1

n n

i i in i
i i

u s u s 
 
        (2) 

 

where ij is the fraction of player i’s payoff contributed exactly 

one time to player j in the original payoff matrix and 

1

1 1, ,, .
n

ij
i

j n


   The resulting payoff matrix is called the 

alpha-transformed payoff matrix.  
For , 1, , ,i j n   when 1ii   and 0,  ,ij i j   a pure 

NE of the alpha-transformed payoff matrix would be a pure NE 
of the original game and hence model selfishness. When 0ii 

and 1
1
,  ,ij n

i j


  a GSE of the alpha-transformed payoff 

matrix would model a pure BE since any player would be trying 
to make the payoffs of the other players as large as jointly 
possible. However, a GSE of this alpha-transformed would not 
necessarily be a BE of the original payoff matrix as seen in 
Example 4.  

In the general case represented by the payoffs of (2), an 
alpha-transformed payoff matrix allows a player to distribute 
his payoff to the n  players, including himself, in any way he 
desires. For this new payoff matrix, a GSE is then determined 
to obtain an SE that gives each player the largest individual 
alpha-transformed payoff jointly possible.  

Definition 8 (WSE). For 
1

max ( ),
n

k ik i
i

s
M u s




   the pure 

strategy profile *s  is a WSE for , , wG T    if and only if 
*s  maximizes over   the utility function 

 

1

 
1

[ ( )]

( )

.
1

, 
n

i
k ik i

k I
wT u s

M u s

s





 

 



   (3)                   

 
Equation (3) is obtained by inserting (2) into (1) with a 

necessary change of subscripts. The following result follows as 

in the proof of Result 1 since 
1 1

( ) ( )
n n

ik i ik i

i i

s su u 
 

   for 

any ,s s    for which s  dominates .s  

Result 3. If *s is a WSE for the game associated with the alpha-

transformed payoff matrix of , , ,wG T   then *s  is Pareto 

maximal for the alpha-transformed payoff matrix of .  
Example 4. Consider the game the three-player game G with 
the payoff matrix of Table VII.                                                    

 
TABLE VII 

PAYOFF MATRIX FOR EXAMPLE 4 

 
s3 t3 

s2 t2 s2 t2 

s1 (3,1,2) (3,4,0) (6,3,0) (3,5,1) 

t1 (1,4,5 (2,2,3 (2,4,4 (-1,2,3) 

 
TABLE VIII 

ALPHA-TRANSFORMED PAYOFFS FOR EXAMPLE 4 
 s3 t3 

s2 t2 s2 t2 

s1 (1.5,2.5,2.0) (2.0,1.5,3.5) (1.5,3.0,4.5) (3.0,2.0,4.0) 

t1 (4.5,3.0,2.5) (2.5,2.5,2.0) (4.0 3.0,3.0) (2.5,1.0,0.5)

 

In Table VII, for players 1, 2, 3,i  the first strategy for player 

i  is labeled si and the second as ti. Let 0,  1, 2,3,ii i   and 

1
2

,  .ij i j   The associated alpha-transformed payoff 
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matrix is shown in Table VIII. 
The GSE for Table VIII is (t1, s2, s3), which is thus the WSE 

for the original game .G  However, (t1, s2, s3) is not a pure BE of 
Table VII, though (t1, s2, t3) is. On the other hand, the GSE (t1, 
s2, s3) is also a BE of Table VII. The pure strategy profiles (t1, 
s2, s3) and (t1, s2, t3) both appear to model mutual support well 
for Table VII and to maximize the sum of the players’ payoffs. 
The GSE (t1, s2, s3) is Pareto maximal for Table VII by Result 3.  

By including the degree to which players support each other, 
the WSE seems a superior model for mutual support or 
cooperation than either the BE or the general equilibrium of 
[20]. For given ,ij  the worst-case computational complexity 

for finding all WSEs is again ( )O N for .j
j I

N n m


   

V.  COMPROMISE SCALAR EQUILIBRIUM 

We next define a compromise scalar equilibrium (CSE) so 
that each player gets a fair payoff relative to the other players. 

For ,    min ( ),i is
m u s


  and ),max (i is

M u s


  we 

consider the utility function   1:cT Ru    for which  

                                                               

 

1

( ) 1
, 

1
[ ( )] .i i

i i

n

c
i

u s m
s

M m
T u s



 






      (4)                                                      

 

From the definition of im  and ,iM  it follows that 

0 [ ( )] 1cT u s   for all .s  The number 1 in the numerators 

of (4) prevents [ ( )]cT u s from being 0 if ( )i iu s m for some i, 

while the number 1 in the denominators prevent a division by 0 
if .i im M  Maximizing [ ( )]cT u s over   requires that each 

*( )iu s  be as close to iM as jointly possible. Thus, the notion of 

fairness for a CSE is that all players with 
i iM m  will receive 

payoffs in approximately the same percentile of their payoff 
ranges over the feasible action profiles. Players with 

i iM m
will receive .

i
M  The following definition extends that of [41]. 

Definition 9 (CSE). The pure strategy profile *s  is a CSE for 

, , cG T    if and only if *s  maximizes [ ( )]cT u s over .   

A CSE can be construed as a compromise between the 
players’ selfishness and unselfishness. It differs from the 
fairness equilibrium of Rabin [38] for two players and from 
such notions of fairness as in Korth [39]. [ ( )]cT u s is a discrete 

analog of the Nash product for the two-person bargaining 
problem [40]. Moreover, maximizing [ ( )]cT u s over   is a 

discrete version of maximizing 1( ,..., )
in

i I

xf x x


 over 

,0 1,
i

i Ix    where the maximum is at .1,i i Ix   

An algorithm to obtain all CSEs would be a simple 
modification of Computational Procedure 1 and have worst-

case time complexity ( )O N for .j
j I

N n m


   Since cT  is easily 

shown to be strictly increasing on   ,u   the next result 

follows directly from Lemma 1.  

Result 4. If *s is a CSE for , , ,cG T  then *s is Pareto 

maximal for .  
Example 5. Consider the two-person PD game G  of Table III 

with 
1 1 2 2( , ), ( , ){ }a b a b  as in the associated Example 2. The 

compromise scalar matrix for  is shown in Table IX. The 
unique CSE is 

2 2
( , ),a b which is not an NE but is a BE. 

 
TABLE IX 

SCALAR MATRIX FOR EXAMPLE 5 
 
 

Player 2 

1b  

(Defect) 
2b  

(Cooperate)

Player 1

1a  

(Defect)
0.1111   

2a  

(Cooperate)
  1 

VI. PARITY SCALAR EQUILIBRIUM 

In the parity scalar equilibrium (PSE) for  , the objective is 
to determine a pure strategy profile s for which the players’ 
payoffs are as nearly equal as jointly possible. For ,S  let 

   
max max ( )ii I s

M u s
 

  and define   1:pT Ru   as 

 

          
1

[ ( )]
( ) 1

, .
i

p
i I

T u s
M u s

s



 

            (5) 

 

Much as for (1), a pure strategy profile *s   maximizing 

[ ( )]pT u s  over   requires that the payoffs * 1, , ,( ),i i nu s    be 

as nearly equal as jointly possible using (5).  
Definition 10 (PSE). The pure strategy profile *s is a PSE for 

, , pG T   if and only if *s maximizes [ ( )]PT u s  over .   

Much as for Result 1, we have the following result. 

Result 5. If *s is a PSE for , *s is Pareto maximal for .   

Example 6. Performing the calculations of (5) for the game G
of Table I yields a maximum value for the unique PSE (t1, s2, t3) 
with associated payoffs (2, 4, 4), which is Pareto maximal. It 
should be noted that if the nonpositive utility function  
 

2

1 1

 ˆ [ ( )] ( ) ( ) ,[ ] , ji

n n

i j i
pT u s u s u s s

  

         (6)                  

 
were used instead of (5), then maximizing (6) to get a PSE 
would have given (t1, t2, s3) with payoffs (2,2,3), which is not 
Pareto maximal. The reason is that (5) and (6) approximate 
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continuous problems slightly differently. In addition, ˆ [ ( )]PT u s

is not strictly increasing on  .u    

VII. SATISFICING SCALAR EQUILIBRIUM  

Aspiration levels are widely used in decision theory [42] and 
will be used here in a satisficing scalar equilibrium (SSE) 
unrelated to the satisficing games of [43]. It will achieve the 
following three objectives.  
(i) An SSE *s gives each player i I at least the targeted 

payoff level i
p  required for the player to agree to the 

action profile *.s  It is assumed that ,,i i
i Ip L 

with some k k
p L to distinguish these aspiration 

levels from the security levels, which are always 
obtainable.  

(ii) The SSE model focuses the players or arbitrator on the 
SSE scalar parameters ., ,i id i Ip   For example, if 

all i
p cannot be simultaneously satisfied, they can be 

modified by an agreement of the players. An SSE can 
also give certain players higher relative payoffs than 
other players. Each player i I will be assigned a 

weighting factory 0.id   If ,j kd d then player j will 

receive a higher payoff than player k by the factor 

,j

k

d

d
 if possible. 

(iii) For ,0,id i I   an SSE is Pareto maximal over the 

joint actions achieving the players’ aspiration levels.  
Definition 11 (SSE). For the fixed scalars ,,i i Ip   and  

,0,id i I   let  : ( ) , }.{ i iS u s p i Is     Then the 

action profile *s  is an SSE for the game   if and only if *s  

maximizes the utility function ( )] ( )[
ii

i I
sT s su d u



  over .   

Result 6. Let the parameters 
11 , ...,,..., , nn d dp p  be scalars with 

.0,id i I   Then any * Ss  solving  

 

      , maximize ( )    ( ) ,
i i i

i I
is S

i Id s subject tou u s p





  (7) 

 
is both an SSE and a Pareto maximum for the game .   

Proof. The action profile * Ss  is an SSE by Definition 11. Let 

,0,id i I   and ,s s    be such that s dominates ,s  so

0 [ ( ) ( )] ( ) [ ( )].
i i i i i i i

i I i I i I

s ss sd d du u u u
  

        Thus sT is 

strictly increasing on )( ,u   and Lemma 1 gives the result. ■ 

One approach for determining feasible aspiration levels ip  

satisfied by at least one s S  in Definition 11 is to select 

weights ,0,id i I   and then maximize ( ).i i
i I

s S
d u s




  The 

aspiration levels *( ) ,,
iip u i Is   are then feasible. For 

,1,id i I  these aspiration levels might be construed as fair. 

This approach suggests the following counterpart to Result 6.  
Result 7. If *s  is Pareto maximal for ,  then for any 

,0,id i I   the action profile *s  is an SSE for the aspiration 

levels *( ) .,
iip u i Is   

Proof. Let *s  be Pareto maximal for .n  Then *s is obviously 

feasible for (3) with *( ), .
iip u i Is   Suppose there exist 

,0,i i Id   for which *s does not solve (1). Then there exists 

some Ss   for which * ( ) ( ) .,
i iiu p u i Iss     It follows 

that *( ) ( )
i i i i

i I i I

u us d sd
 

     and hence 

*( ) ( )] 0.[
i i i

i I

u u sd s


   But since ,0, i Id    then 

*( ) ( ) ,,i iu u i Iss    and *( ) ( )k ku u ss   for some .k  Hence 

*s  is not a Pareto maximum for  in contradiction to the 

assumption. It follows that for any ,0,id i I  *s solves (3) 

for aspiration levels *( ) ,,
iip u i Is   and is an SSE.■ 

Example 7. Consider now the payoff matrix of Example 1 in 
Table I. Note that 1 2 (7, 5))( ,p p   yields no feasible action 

profiles. When 1 2 (5, 4),)( ,p p   the optimization problem (7) 

has a solution, and the feasible s  are 
2 3( , )a b with payoff 

vector ,(7, 4) 3 2( , )a b  with payoff vector ,(5, 6) and 
3 3( , )a b

with payoff vector .(6, 6) Setting 1 2 1d d   in (7) gives the 

unique SSE 
3 3

* ( , )s a b  with payoff vector .(6, 6)  For 

1 2 (5, 4))( ,p p   and 
1 2( 0.7, 0.3),, ) (d d   the satisficing scalar 

matrix of values [ ( )]sT u s for the feasible payoffs is shown in 

Table X, where cells with  have infeasible payoffs. The 

unique SSE for Table X is 
2 3( , )a b with payoff profile .(7, 4)  

Its scalar value is bolded and underlined.  
 

TABLE X 
SCALAR MATRIX FOR EXAMPLE 7 WITH (P1, P2) = (5,4), (D1, D2) = (0.7,0.3) 

 
Player 2 

1b  2b  3b  

Player 1

1a        

2a      6.1 

3a    5.3 6.0 

 

For appropriate aspiration levels, an SSE always exists for .  
Computational Procedure 1 can again be modified to determine 

if an SSE exists and to obtain them all if so. To do so, iL  is 
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replaced by ip and gT  by sT  for a given set of 0.id   

Whenever ( ) ,ii pu s   the replacement ( )i Qu s   in the 

maximization of (3) assures that s will not be an SSE. This 
modified procedure also has worst-case time complexity 

( )O N for .j
j I

N n m


    

VIII. AXIOMATIC CONSIDERATIONS 

A set of five axioms is now proposed for the SEs of 

, , .TG    Nash [40] gave versions of Axioms 1-4 for his 

bargaining problem. Axiom 5 was formulated by Kalai [45]. 

1. Nondominance: No player’s payoff for an SE *s of   is 
better for any other s  unless some different player’s 
payoff is worse. 

2. Symmetry: If the players of  cannot be distinguished 
before an SE is obtained, then an SE cannot distinguish 
between them. 

3. Invariance to Linear Transformations: Let *s  be an SE of 

  for which all utilities , ,( ),  i i Iu ss    and any 

aspiration levels ,,i i Ip   are nonnegative. For every 

0,   then *s  will also be an SE for the game with all 
utilities and any aspiration levels linearly transformed to 

( )iu s  and .,i i Ip   

4. Independence of Irrelevant Alternative: If *
1s  is an SE 

for   with respect to a feasible set 1  and if

*
2 1,s     then *s is an SE with respect to the 

feasible set 2 .  

5. Monotonicity. If *s S is an SE for the feasible set 1  and 

**s S is an SE for the feasible set 2 1,   then 

* ** .( ) ( ),i iu u i Is s    

The Nash two-person bargaining solution [40] satisfies the 
above five axioms except for Axiom 5. The two-person 
bargaining solution of Kalai [44] satisfies all the axioms except 
Axiom 4, while the solution of Kalai and Smorodinsky [45] 
satisfies Axioms 1-3 but not Axioms 4-5. The SEs of this paper 
clearly satisfy Axioms 1-4. However, Axiom 5 is not satisfied 
by the SEs here as illustrated by the game of Example 2 when 

21 1 1 2( , ), ( , ){ }a b a b   and 
2 .S   In that case, the GSE 

associated with 
1 is 

2 2
* ( , )a bs  with *[ ( )] 1.gT u s  while 

one GSE associated with 
2  is 

1 2
** ( , )a bs   with 

*[ ( )] 0.1667.gT u s   Note that 
2 2

** *( ) 0 ( ) 3.u us s    

IX. CONCLUSION 

Mixed strategy solution concepts for normal-form games are 
problematic in their computation, interpretation, and 
application. Indeed, a mixed Nash equilibria for three or more 
players is usually only an approximation due to the PPAD 

computational complexity of the problem. In addition, 
according to [1], most games involve implicit negotiations in 
some fashion. The approach proposed here would require an 
agreement on a utility function T  yielding a particular type of 
SE. The associated negotiation would represent a cooperative 
aspect for the game. There would also be a competitive aspect 
since each player would want any SE to be as good as possible 
for him according to his stated objective. In summary, this 
paper attempts to reduce the selection of pure strategies for the 
games considered here to the choice of an appropriate utility 
function ,T  of which five were offered. 
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