Search results for: Conventional Stiffened Structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3923

Search results for: Conventional Stiffened Structure

3473 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure

Authors: Ying-Wen Bai, Ju-Maw Chen

Abstract:

To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.

Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
3472 Influence of Different Asymmetric Rolling Processes on Shear Strain

Authors: A. Pesin, D. Pustovoytov, M. Sverdlik

Abstract:

Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.

Keywords: Asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
3471 State of Freelancing in IT and Future Trends

Authors: Mihai Gheorghe

Abstract:

Freelancing in IT has seen an increased popularity during the last years mainly because of the fast Internet adoption in the countries with emerging economies, correlated with the continuous seek for reduced development costs as well with the rise of online platforms which address planning, coordination and various development tasks. This paper conducts an overview of the most relevant Freelance Marketplaces available and studies the market structure, distribution of the workforce and trends in IT freelancing.

Keywords: Freelancing in IT, Freelance Marketplaces, Freelance Market Structure, Globalization, Online Staffing, Trends in Freelancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705
3470 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4001
3469 An Experimental and Numerical Investigation of Press Force and Weld Line Displacement of Tailor Welded Blanks in Conventional and Rubber Pad Sheet Metal Forming

Authors: Amir Ansari, Ehsan Shahrjerdi, Ehsan Amini

Abstract:

To investigate the behavior of sheet metals during forming tailor welded blanks (TWB) of various thickness made via Co2 Laser welding are under consideration. These blanks are formed used two different forming methods of rubber as well as the conventional punch and die methods. The main research objective is the effects of using a rubber die instead of a solid one the displacement of the weld line and the press force needed for forming. Specimens with thicknesses of 0.5, 0.6, 0.8 and 1mm are subjected to Erichsen two dimensional tests and the resulted force for each case are compared. This is followed by a theoretical and numerical study of press force and weld line displacement. It is concluded that using rubber pad forming (RPF) causes a reduction in weld line displacement and an increase in the press force.

Keywords: Rubber pad forming, Tailor welded blank, Thickness ratio, Weld line displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
3468 Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada

Authors: M. Bittencourt, E. K. Yanful, D. Velasquez, A. E. Jungles

Abstract:

The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.

Keywords: Environmental Impacts, Green buildings, Life CycleAnalysis, Sustainability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
3467 Design of Reliable and Low Cost Substrate Heater for Thin Film Deposition

Authors: Ali Eltayeb Muhsin, Mohamed Elhadi Elsari

Abstract:

The substrate heater designed for this investigation is a front side substrate heating system. It consists of 10 conventional tungsten halogen lamps and an aluminum reflector, total input electrical power of 5 kW. The substrate is heated by means of a radiation from conventional tungsten halogen lamps directed to the substrate through a glass window. This design allows easy replacement of the lamps and maintenance of the system. Within 2 to 6 minutes the substrate temperature reaches 500 to 830 C by varying the vertical distance between the glass window and the substrate holder. Moreover, the substrate temperature can be easily controlled by controlling the input power to the system. This design gives excellent opportunity to deposit many deferent films at deferent temperatures in the same deposition time. This substrate heater was successfully used for Chemical Vapor Deposition (CVD) of many thin films, such as Silicon, iron, etc.

Keywords: CVD, Halogen Lamp, Substrate Heater, Thin Films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727
3466 An Embedded System for Artificial Intelligence Applications

Authors: Ioannis P. Panagopoulos, Christos C. Pavlatos, George K. Papakonstantinou

Abstract:

Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.

Keywords: Attribute Grammars, Logic Programming, RISC microprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5080
3465 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: Control, machining, multibody, robotic, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
3464 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: Biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
3463 Evaluation of Progressive Collapse of Transmission Tower

Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee

Abstract:

The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.

Keywords: Transmission tower, OpenSEES, pushover analysis, progressive collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
3462 Enhanced Nutrients Removal in Conventional Anaerobic Digestion Processes

Authors: M. Z. Othman, S. Uludag-Demirer, G. N. Demirer

Abstract:

One of the main challenges for one phase anaerobic digestion processes is the high concentration of NH4+ and PO4 3- ions  in the digested sludge supernatant. This project focuses on enhancing the removal of nutrients during the anaerobic digestion process through fixing both NH4+ and PO4 3- ions in the form of struvite (magnesium ammonium phosphate, MAP, MgNH4PO4.6H2O) within the anaerobic sludge. Batch anaerobic digestion tests showed that Mg2+ concentration in the range 279 – 812 mg/L had insignificant effect on CGP but incurred a slight increase in COD removal. The reactor that had soluble Mg2+:NH4+:PO43- at a molar ratio of 1.28:1:00:1:00 achieved the best performance enhancement of 8% increase in COD removal and 32% reduction in NH4+ in the reactor supernatant. Overall, the results show that there is a potential to optimise conventional anaerobic digestion such that supernatant lean in P and N, and sludge rich in nutrients are obtained. 

Keywords: Anaerobic Digestion, Nutrients, Struvite, Waste Activated Sludge (WAS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
3461 Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process

Authors: Maziar Ramezani, Thomas Neitzert

Abstract:

This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.

Keywords: Deep drawing, Hydroforming, Rubber diaphragm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
3460 Ambipolar Effect Free Double Gate PN Diode Based Tunnel FET

Authors: Hardik Vaghela, Mamta Khosla, Balwindar Raj

Abstract:

In this paper, we present and investigate a double gate PN diode based tunnel field effect transistor (DGPNTFET). The importance of proposed structure is that the formation of different drain doping is not required and ambipolar effect in OFF state is completely removed for this structure. Validation of this structure to behave like a Tunnel Field Effect Transistor (TFET) is carried out through energy band diagrams and transfer characteristics. Simulated result shows point subthreshold slope (SS) of 19.14 mV/decade and ON to OFF current ratio (ION / IOFF) of 2.66 × 1014 (ION at VGS=1.5V, VDS=1V and IOFF at VGS=0V, VDS=1V) for gate length of 20nm and HfO2 as gate oxide at room temperature. Which indicate that the DGPNTFET is a promising candidate for nano-scale, ambipolar free switch.

Keywords: Ambipolar effect, double gate PN diode based tunnel field effect transistor, high-κ dielectric material, subthreshold slope, tunnel field effect transistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
3459 Mobile Learning Implementation: Students- Perceptions in UTP

Authors: Ahmad Sobri bin Hashim, Wan Fatimah Bt. Wan Ahmad, Rohiza Bt. Ahmad

Abstract:

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

Keywords: m-learning, conventional learning, electronic learning, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
3458 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process

Authors: Alluru Gopala Krishna, Thella Babu Rao

Abstract:

In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.

Keywords: CNT based nanocoolant, turning, tool wear, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
3457 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach

Abstract:

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
3456 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
3455 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
3454 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load

Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin

Abstract:

A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.

Keywords: Variable structure control, robust control, switching surface, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
3453 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: Video surveillance, disentanglement, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
3452 Hardware Stream Cipher Based On LFSR and Modular Division Circuit

Authors: Deepthi P.P., P.S. Sathidevi

Abstract:

Proposal for a secure stream cipher based on Linear Feedback Shift Registers (LFSR) is presented here. In this method, shift register structure used for polynomial modular division is combined with LFSR keystream generator to yield a new keystream generator with much higher periodicity. Security is brought into this structure by using the Boolean function to combine state bits of the LFSR keystream generator and taking the output through the Boolean function. This introduces non-linearity and security into the structure in a way similar to the Non-linear filter generator. The security and throughput of the suggested stream cipher is found to be much greater than the known LFSR based structures for the same key length.

Keywords: Linear Feedback Shift Register, Stream Cipher, Filter generator, Keystream generator, Modular division circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
3451 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform

Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee

Abstract:

It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.

Keywords: CFD, Coanda, Lift, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
3450 A General Model for Amino Acid Interaction Networks

Authors: Omar Gaci, Stefan Balev

Abstract:

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we identify a number of properties of these networks. We compare them to the general small-world network model and we analyze their hierarchical structure.

Keywords: interaction network, protein structure, small-world network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3449 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
3448 An Approach of the Inverter Voltage Used for the Linear Machine with Multi Air-Gap Structure

Authors: Pierre Kenfack

Abstract:

In this paper we present a contribution for the modelling and control of the inverter voltage of a permanent magnet linear generator with multi air-gap structure. The time domain control method is based on instant comparison of reference signals, in the form of current or voltage, with actual or measured signals. The reference current or voltage must be kept close to the actual signal with a reasonable tolerance. In this work, the time domain control method is used to control tracking signals. The performance evaluation concerns the continuation of reference signal. Simulations validate very well the tracking of reference variables (current, voltage) by measured or actual signals. All is simulated and presented under PSIM Software to show the performance and robustness of the proposed controller.

Keywords: Control, permanent magnet, linear machine, multi air-gap structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
3447 Analysis of the Theoretical Values of Several Characteristic Parameters of Surface Topography in Rotational Turning

Authors: J. Kundrák, I. Sztankovics, K. Gyáni

Abstract:

In addition to the increase of the material removal rate or surface rate, or the improvement of the surface quality, which are the main aims of the development of manufacturing technology, a growing number of other manufacturing requirements have appeared in the machining of workpiece surfaces. Among these it is becoming increasingly dominant to generate a surface topography in finishing operations which meets more closely the needs of operational requirements.

These include the examination of the surface periodicity and/or ensuring that the twist-structure values are within the limits (or even preventing its occurrence) in specified cases such as on the sealing surfaces of rotating shafts or on the inside working surfaces of needle roller bearings. In the view of the measurement the twist has different parameters from surface roughness, which must be determined for the machining procedures. Therefore in this paper the alteration of the theoretical values of the parameters determining twist structure are studied as a function of the kinematic properties.

Keywords: Kinematic parameters, rotational turning, surface topography, twist structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
3446 An Experimental Consideration of the Hybrid Architecture Based on the Situated Action Generator

Authors: Serin Lee, Takashi Kubota, Ichiro Nakatani

Abstract:

The approaches to make an agent generate intelligent actions in the AI field might be roughly categorized into two ways–the classical planning and situated action system. It is well known that each system have its own strength and weakness. However, each system also has its own application field. In particular, most of situated action systems do not directly deal with the logical problem. This paper first briefly mentions the novel action generator to situatedly extract a set of actions, which is likely to help to achieve the goal at the current situation in the relaxed logical space. After performing the action set, the agent should recognize the situation for deciding the next likely action set. However, since the extracted action is an approximation of the action which helps to achieve the goal, the agent could be caught into the deadlock of the problem. This paper proposes the newly developed hybrid architecture to solve the problem, which combines the novel situated action generator with the conventional planner. The empirical result in some planning domains shows that the quality of the resultant path to the goal is mostly acceptable as well as deriving the fast response time, and suggests the correlation between the structure of problems and the organization of each system which generates the action.

Keywords: Situated reasoning, situated action, planning, hybrid architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
3445 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

Authors: P. Subbaraj, V. Rajasekaran

Abstract:

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.

Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
3444 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573