Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30848
An Approach of the Inverter Voltage Used for the Linear Machine with Multi Air-Gap Structure

Authors: Pierre Kenfack


In this paper we present a contribution for the modelling and control of the inverter voltage of a permanent magnet linear generator with multi air-gap structure. The time domain control method is based on instant comparison of reference signals, in the form of current or voltage, with actual or measured signals. The reference current or voltage must be kept close to the actual signal with a reasonable tolerance. In this work, the time domain control method is used to control tracking signals. The performance evaluation concerns the continuation of reference signal. Simulations validate very well the tracking of reference variables (current, voltage) by measured or actual signals. All is simulated and presented under PSIM Software to show the performance and robustness of the proposed controller.

Keywords: Control, permanent magnet, linear machine, multi air-gap structure

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314


[1] Pierre Kenfack, Daniel Matt, Philippe Enrici, Designing a Permanent Magnet Linear Generator Multi Air- gap Structure using the Finite Element Method, 10th International Conference on Electrical and Electronics Engineering (ELECO 2017), 30 November - 2 December 2017, Bursa-Turkey (2017) PP: 1414-1418. Electronic ISBN: 978-605-01-1134-7 IEEE.
[2] P. Kenfack, D.Matt, P.Enrici, M.François, Impact of Mechanical Stresses on Flat double sided Linear Electric Motor Multi-air gap Structure guided or Friction Plates, IEEE International Magnetics Conference (INTERMAG Europe 2017), 24th – 28th April 2017, Dublin-Ireland (2017). Electronic ISSN: 2150-4601 IEEE.
[3] E.Gholipour Sharaki, Apport de l’UPFC à l’amélioration de la stabilité transitoire des réseaux électriques, Thèse de Doctorat de l’Université Henri Poincaré, Nancy I, 13 octobre 2003.
[4] E. Catz, Evolutions techniques du système de transport et de distribution d’électricité, in J3eA, Vol. 5 Hors-Série, 2006.
[5] T. Wildi, Electrotechnique, Les presses de l’université Laval, Québec et Ottawa, 2001. Ch.42
[6] N.F. Mailah, S.M. Bashi, Single phase Unified Power Controller (UPFC): Simulation and construction, European Journal of Scientific Research, vol.30 No.4, PP.677-684, 2009.
[7] G.S. Perantzakis, and al, A predictive Current Control Technique for Three- Level NPC Voltage Source Inverters, 0-7803-9033-4/05/2005 IEEE.
[8] Le Jiang-yuan, Zhang Zhi, Lai Xiao-hua Jiang, Predictive direct power control of three-phase shunt active power filter, Electric Machines and Control, 2012.16(5): 86-90.
[9] Li Ning, Wang Yue, WANG Zhao-an, Reviews of Direct Power Control Strategy in Power Electronic Converters, Journal of Supply. 2013.1(1):45-52.
[10] Guangqing Bao, Jingyi Wen, Xiaolan Wang, Dongsong Luo, Predictive Direct Power Control for Permanent Magnet Linear Generator Side Converter, 17th International Conference on Electrical Machines and Systems (ICEMS), Oct. 22-25, 2014, Hangzhou, China.
[11] Vladimir Blasko Member, IEEE, Vikram Kaura Member, IEEE, A New Mathematical Model and Control of a Three- Phase AC- DC Voltage Source Converter, IEEE Transactions on Power Electronics, Vol. 12, No. 1, January 1997.
[12] Yun Wei Li Member, IEEE, Control and Resonance Damping of Voltage –Source and Current- Source Converters With LC Filters, IEEE Transactions on Power Electronics, Vol. 56, No. 5, May 2009.
[13] H. Buhler, Convertisseurs statiques, PPUR 1991, Lausanne, Switzerland.
[14] Y.Ye, M. Kazerani, V.H. Quintana, A Novel Modeling and Control Method for Three-Phase PWM Converters, 0-7803-7067-8/01/2001 IEEE.
[15] Y Yang Xing-wu, Jiang Jian-guo. Predictive direct power control for three-phase voltage source PWM rectifiers. Proceedings of the CSEE, 2011.31(3):34-39.