Search results for: structural damping.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1408

Search results for: structural damping.

988 Relationships among Tourists’ Needs for Uniqueness, Perceived Authenticity and Behavioral Intentions

Authors: Deniz Karagöz Yüncü

Abstract:

This study tested a structural model which investigates the relationships among tourists’ need for uniqueness, perceived authenticity (object-based authenticity and existential authenticity) and behavioral intentions to consume cultural and heritage destinations. The sample of the study comprised of 281 participants in a cultural heritage site, in Cappadocia, Turkey. The data were provided via face to face interviews in two months (September and October) which considered the high season. Structural equation modeling was employed to test the causal relationships among the hypotheses. Findings revealed tourists’ creative choice had an influence on object-based authenticity and existential authenticity. Tourists’ avoidance had an influence on object-based authenticity. The study concluded that two dimensions, namely, the object based authenticity and existential authenticity had significant impact on behavioral intentions.

Keywords: Needs for uniqueness, object-based authenticity, existential authenticity, behavioral intentions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
987 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: Camera type weft straightener, structure analysis, control, skew and bow roller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
986 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: A. Al-Mosawe, R. Al-Mahaidi

Abstract:

Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.

Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
985 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov

Abstract:

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
984 Acoustic and Flow Field Analysis of a Perforated Muffler Design

Authors: Zeynep Parlar, Şengül Ari, Rıfat Yilmaz, Erdem Özdemir, Arda Kahraman

Abstract:

New regulations and standards for noise emission increasingly compel the automotive firms to make some improvements about decreasing the engine noise. Nowadays, the perforated reactive mufflers which have an effective damping capability are specifically used for this purpose. New designs should be analyzed with respect to both acoustics and back pressure. In this study, a reactive perforated muffler is investigated numerically and experimentally. For an acoustical analysis, the transmission loss which is independent of sound source of the present cross flow, the perforated muffler was analyzed by COMSOL. To be able to validate the numerical results, transmission loss was measured experimentally. Back pressure was obtained based on the flow field analysis and was also compared with experimental results. Numerical results have an approximate error of 20% compared to experimental results.

Keywords: Back Pressure, Perforated Muffler, Transmission Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8301
983 Structural Integrity Management for Fixed Offshore Platforms in Malaysia

Authors: Narayanan Sambu Potty , Mohammad Kabir B. Mohd Akram

Abstract:

Structural Integrity Management (SIM) is important for the protection of offshore crew, environment, business assets and company and industry reputation. API RP 2A contained guidelines for assessment of existing platforms mostly for the Gulf of Mexico (GOM). ISO 19902 SIM framework also does not specifically cater for Malaysia. There are about 200 platforms in Malaysia with 90 exceeding their design life. The Petronas Carigali Sdn Bhd (PCSB) uses the Asset Integrity Management System and the very subjective Risk based Inspection Program for these platforms. Petronas currently doesn-t have a standalone Petronas Technical Standard PTS-SIM. This study proposes a recommended practice for the SIM process for offshore structures in Malaysia, including studies by API and ISO and local elements such as the number of platforms, types of facilities, age and risk ranking. Case study on SMG-A platform in Sabah shows missing or scattered platform data and a gap in inspection history. It is to undergo a level 3 underwater inspection in year 2015.

Keywords: platform, assessment, integrity, risk based inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7238
982 Structural Cost of Optimized Reinforced Concrete Isolated Footing

Authors: Mohammed S. Al-Ansari

Abstract:

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.

Keywords: Footing, Depth, Concrete, Steel, Formwork, Optimization, Material cost, Cost Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4680
981 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: Reliability, reinforced concrete, safety, slender column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
980 Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Authors: Woo Young Jung, Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju

Abstract:

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Keywords: Con’c Track Slab, Asphalt Trackbed, Thermal Load, Friction Condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3417
979 Small Signal Stability Assessment of MEPE Test System in Free and Open Source Software

Authors: Kyaw Myo Lin

Abstract:

This paper presents small signal stability study carried over the 140-Bus, 31-Machine, 5-Area MEPE system and validated on free and open source software: PSAT. Well-established linearalgebra analysis, eigenvalue analysis, is employed to determine the small signal dynamic behavior of test system. The aspects of local and interarea oscillations which may affect the operation and behavior of power system are analyzed. Eigenvalue analysis is carried out to investigate the small signal behavior of test system and the participation factors have been determined to identify the participation of the states in the variation of different mode shapes. Also, the variations in oscillatory modes are presented to observe the damping performance of the test system.

Keywords: Eigenvalue analysis, Mode shapes, MEPE test system, Participation factors, Power System oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
978 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: Hyperelasticity, constitutive model, fiber-matrix interaction, ligament, tendon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
977 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.

Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
976 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: Gamma-irradiation, internal friction, shear modulus, SiGe alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
975 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller

Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani

Abstract:

The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.

Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
974 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Keywords: Soil-Structure Interaction, RC pile, RC Tunnel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
973 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
972 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: Finite element model, rotordynamic system, model reduction, substructuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4045
971 Photomechanical Analysis of Wooden Testing Bodies under Flexural Loadings

Authors: J. Gazzola, I. M. Dal Fabbro, J. Soriano, M. V. G. Silva, S. Rodrigues

Abstract:

Application of wood in rural construction is diffused all around the world since remote times. However, its inclusion in structural design deserves strong support from broad knowledge of material properties. The pertinent literature reveals the application of optical methods in determining the complete field displacement on bodies exhibiting regular as well as irregular surfaces. The use of moiré techniques in experimental mechanics consists in analyzing the patterns generated on the body surface before and after deformation. The objective of this research work is to study the qualitative deformation behavior of wooden testing specimens under specific loading situations. The experiment setup follows the literature description of shadow moiré methods. Results indicate strong anisotropy influence of the generated displacement field. Important qualitative as well as quantitative stress and strain distribution were obtained wooden members which are applicable to rural constructions.

Keywords: Moiré methods, wooden structural material, rural constructions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
970 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl

Abstract:

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Keywords: Admixture, organisms, porosity and strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
969 A PSO-based SSSC Controller for Improvement of Transient Stability Performance

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
968 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
967 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
966 Innovation Trends in Latin America Countries

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

This paper analyzes innovation trends in Latin America countries by means of the number of patent applications filed by residents and non residents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in Argentina, Brazil Chile, and Mexico. These changes may suggest that firms’ innovative activity has been modified as a result of implementing a particular science, technology and innovation (STI) policy. Accordingly, the new regulations implemented in these countries during 1980s and 1990s have influenced their intellectual property regimes. The question conducting this research is thus how STI policies in these countries have affected their innovation activity? The results achieved in this research confirm the existence of multiple structural changes in the series of patent applications resulting from STI policies implemented in these countries.

Keywords: Econometric methods, innovation activity, Latin America countries, patents, science, technology and innovation (STI) policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
965 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
964 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
963 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
962 Computational Analysis of Potential Inhibitors Selected Based On Structural Similarity for the Src SH2 Domain

Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai

Abstract:

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

Keywords: Nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
961 Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
960 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
959 The Influence of the Intellectual Capital on the Firms’ Market Value: A Study of Listed Firms in the Tehran Stock Exchange (TSE)

Authors: Bita Mashayekhi, Seyed Meisam Tabatabaie Nasab

Abstract:

Intellectual capital is one of the most valuable and important parts of the intangible assets of enterprises especially in knowledge-based enterprises. With respect to increasing gap between the market value and the book value of the companies, intellectual capital is one of the components that can be placed in this gap. This paper uses the value added efficiency of the three components, capital employed, human capital and structural capital, to measure the intellectual capital efficiency of Iranian industries groups, listed in the Tehran Stock Exchange (TSE), using a 8 years period data set from 2005 to 2012. In order to analyze the effect of intellectual capital on the market-to-book value ratio of the companies, the data set was divided into 10 industries, Banking, Pharmaceutical, Metals & Mineral Nonmetallic, Food, Computer, Building, Investments, Chemical, Cement and Automotive, and the panel data method was applied to estimating pooled OLS. The results exhibited that value added of capital employed has a positive significant relation with increasing market value in the industries, Banking, Metals & Mineral Nonmetallic, Food, Computer, Chemical and Cement, and also, showed that value added efficiency of structural capital has a positive significant relation with increasing market value in the Banking, Pharmaceutical and Computer industries groups. The results of the value added showed a negative relation with the Banking and Pharmaceutical industries groups and a positive relation with computer and Automotive industries groups. Among the studied industries, computer industry has placed the widest gap between the market value and book value in its intellectual capital.

Keywords: Capital Employed, Human Capital, Intellectual Capital, Market-to-Book Value, Structural Capital, Value Added Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736