Search results for: mechanical property
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1685

Search results for: mechanical property

1265 Enhancement of Recycled Concrete Aggregate Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%

Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle

Abstract:

The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute large part of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.

Keywords: Recycled concrete aggregates, RCA, mechanical treatment, aggregate properties, compression strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
1264 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: Fatigue, HTPB propellant, tensile properties, time-temperature superposition principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
1263 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash

Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý

Abstract:

Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.

Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1262 Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose

Authors: Viviane C. Correia, Sergio F. Santos, Holmer Savastano Jr.

Abstract:

The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp).

Keywords: Carbonation, cement composites, nanofibrillated cellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
1261 Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method

Authors: Lina Wu, Jia Liu, Ye Li

Abstract:

The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting.

Keywords: Bochner Formula, Stokes’ Theorem, Cauchy-Schwarz Inequality, first and second variation formulas, Hardy-Sobolev type inequalities, Liouville-type problem, p-harmonic map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
1260 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: Additive manufacturing, fused deposition modeling, raster angle, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1259 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: Carbon Fiber Reinforced Polymer, Epoxy, Multi-Walled Carbon Nanotube, Glass Transition Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
1258 Mechanical Behaviour and Electrical Conductivity of Oxygen Separation Membrane under Uniaxial Compressive Loading

Authors: Wakako Araki, Jürgen Malzbender

Abstract:

The mechanical deformation and the electrical conductivity of lanthanum strontium cobalt ferrite oxide under uniaxial compression were investigated at various temperatures up to 1073 K. The material reveals a rather complex mechanical behaviour related to its ferroelasticity and completely different stress-strain curves are obtained during the 1st and 2nd loading cycles. A distinctive ferroelastic creep was observed at 293 K whilst typical ferroelastic stress-strain curve were obtained in the temperature range from 473 K to 873 K. At 1073 K, on the other hand, high-temperature creep deformation was observed instead of ferroelastic deformation. The conductivity increases with increasing compressive stress at all the temperatures. The increase in conductivity is related to both geometrical and piezoelectric effects. From 293 K to 873 K, where the material exhibits ferroelastic behaviour, the variation in the total conductivity decreases with increasing temperature. The contribution of the piezoelectric effect to the total conductivity variation also decreases with increasing temperature and the maximum in piezoconductivity has a value of about 0.75 % at 293 K for a compressive stress of 100 MPa. There is no effect of domain switching on conductivity except for the geometric effect. At 1073 K, the conductivity is simply proportional to the compressive strain.

Keywords: Ferroelasticity, Piezoconductivity, oxygen separation membrane, perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1257 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560
1256 Property of Polyurethane: from Soy-derived Phosphate Ester

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foams (PUF) were formed by a chemical reaction of polyol and isocyanate. The polyol was manufactured by ring-opening hydrolysis of epoxidized soybean oil in the presence of phosphoric acid under varying experimental conditions. Other factors in the foam formulation such as water content and surfactant were kept constant. The effect of the amount of solvents, phosphoric acid, and their derivates in the foam formulation on the properties of polyurethane foams were studied. The properties of the material were measured via a number of parameters, which are water content of prepared polyol, polymer density and cellular structures.

Keywords: soy, polyurethane, phosporic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
1255 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4040
1254 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
1253 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
1252 Mechanical Properties of Particle Boards from Maize Cob and Urea-Formaldehyde Resin

Authors: A. Danladi, I. O. Patrick

Abstract:

Particle boards were prepared from Maize cob (MC) and urea-formaldehyde resin (UFR) on compression moulding machine. The amount of MC was varied from 50-120g while 30g of UFR was kept constant. Some mechanical properties of the particle boards were tested using the standard ASM methods. The results show that as the MC content increased from 50- 120g in 30g UFR, the hardness increased from about 6.89 x 102 to7.51 x 102MPa. Impact strength decreased from 3.3x 10-2 to 0.45 x 10-2J/M2, while tensile strength initially increased from 2.63 x 102 to 3.14 x 102 MPa as the MC increased from 50 to 60g in 30g UFR, thereafter, it decreased to about 1.35 x 102MPa at 120g in 30g content.

Keywords: Hardness, Impact strength, Maize cob, Tensile strength and Urea-formaldehyde resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4445
1251 Extracting Road Signs using the Color Information

Authors: Wen-Yen Wu, Tsung-Cheng Hsieh, Ching-Sung Lai

Abstract:

In this paper, we propose a method to extract the road signs. Firstly, the grabbed image is converted into the HSV color space to detect the road signs. Secondly, the morphological operations are used to reduce noise. Finally, extract the road sign using the geometric property. The feature extraction of road sign is done by using the color information. The proposed method has been tested for the real situations. From the experimental results, it is seen that the proposed method can extract the road sign features effectively.

Keywords: Color information, image processing, road sign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1250 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: Composite, epoxy, polyester, relining, sewage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1249 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
1248 Mechanical Characteristics on Fatigue Crack Propagation in Aluminium Plate

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems.

Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: Aluminium alloys, plate, crack, failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
1247 Properties of Bricks Produced With Recycled Fine Aggregate

Authors: S. Ismail, Z. Yaacob

Abstract:

The main aim of this research is to study the possible use of recycled fine aggregate made from waste rubble wall to substitute partially for the natural sand used in the production of cement and sand bricks. The bricks specimens were prepared by using 100% natural sand; they were then replaced by recycled fine aggregate at 25, 50, 75, and 100% by weight of natural sand. A series of tests was carried out to study the effect of using recycled aggregate on the physical and mechanical properties of bricks, such as density, drying shrinkage, water absorption characteristic, compressive and flexural strength. Test results indicate that it is possible to manufacture bricks containing recycled fine aggregate with good characteristics that are similar in physical and mechanical properties to those of bricks with natural aggregate, provided that the percentage of recycled fine aggregates is limited up to 50-75%.

Keywords: Bricks, cement, recycled aggregate, sand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571
1246 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1245 Metallographic Analysis of Laser and Mechanically Formed HSLA Steel

Authors: L.C. Kgomari, R.K.K.Mbaya

Abstract:

This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.

Keywords: Laser, Forming, Microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1244 A Fiber Optic Interferometric Sensor for Dynamic Measurement

Authors: N. Sathitanon, S. Pullteap

Abstract:

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

Keywords: Optical fiber sensors, dynamic displacement, fringe counting, reference displacement sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
1243 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10544
1242 Digital Paradoxes in Learning Theories

Authors: Marcello Bettoni

Abstract:

As a learning theory tries to borrow from science a framework to found its method, it shows paradoxes and paralysing contraddictions. This results, on one hand, from adopting a learning/teaching model as it were a mere “transfer of data" (mechanical learning approach), and on the other hand from borrowing the complexity theory (an indeterministic and non-linear model), that risks to vanish every educational effort. This work is aimed at describing existing criticism, unveiling the antinomic nature of such paradoxes, focussing on a view where neither the mechanical learning perspective nor the chaotic and nonlinear model can threaten and jeopardize the educational work. Author intends to go back over the steps that led to these paradoxes and to unveil their antinomic nature. Actually this could serve the purpose to explain some current misunderstandings about the real usefulness of Ict within the youth-s learning process and growth.

Keywords: Antinomy, complexity, Leibniz, paradox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
1241 Behavior of Optical Fiber Aged in CTAC Solutions

Authors: R. El Abdi, A. D. Rujinski, R. M. Boumbimba, M. Poulain

Abstract:

The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.

Keywords: Optical fiber, CMC point, CTAC surfactant, fiber strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
1240 Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan, N. Mathiazhagan

Abstract:

Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.

Keywords: Laser Beam Welding (LBW), Mechanical properties, Titanium and Aluminium thin sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
1239 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: Stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1238 The Protection and Enhancement of the Roman Roads in Algeria

Authors: T. Ninouh, A. Rouili

Abstract:

The Romain paths or roads offer a very interesting archaeological material, because they allow us to understand the history of human settlement and are also factors that increase territorial identity. Roman roads are one of the hallmarks of the Roman empire, which extends to North Africa. The objective of this investigation is to attract the attention of researchers of the importance of Roman roads and paths, which are found in Algeria, according to the quality of the materials and techniques used in this period our history, and to encourage other decision makers to protect and enhance these routes because the current urbanization, intensive agricultural practices, or simply forgotten, decreases the sustainability of this important historical heritage.

Keywords: Romain paths, material Materials, Property, Valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1237 Routing Algorithm for a Clustered Network

Authors: Hemanth KumarA.R, Sudhakara G., Satyanarayana B.S.

Abstract:

The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

Keywords: Metric dimension, Cluster dimension, Cluster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
1236 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot

Authors: S. Parasuraman, Ler Shiaw Pei

Abstract:

In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.

Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984