**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31532

##### Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method

**Authors:**
Lina Wu,
Jia Liu,
Ye Li

**Abstract:**

**Keywords:**
Bochner Formula,
Stokes’ Theorem,
Cauchy-Schwarz
Inequality,
first and second variation formulas,
Hardy-Sobolev type
inequalities,
Liouville-type problem,
p-harmonic map.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1339760

**References:**

[1] R. Bellman, Dynamic programming and Lagrange Multiplies, Proceedings of the National Academy of Sciences, 1956, 42(10): 767-769.

[2] L. F. Cheung and P. F. Leung, A remark on convex functions and p-harmonic maps,Geometriae Dedicata, 56(3), 269-270.

[3] F. H. Clarke Necessary Conditions for Nonsmooth Problems in Optimal Control and the Calculus of Variations, Doctoral thesis, University of Washington, 1973. (Thesis director: R.T. Rockafellar)

[4] L. A. Caffarelli, R. Kohn and L. Nirenberg, First Order Interpolation Inequalities with Weights, Compositio Math., 53(1984), 259-275.

[5] S. Kawai, p-Harmonic maps and convex functions,Geometriae Dedicata, 74(3), 261-265.

[6] M. Morse, Relations between the critical points of a real function of n independent variables, Transactions of the American Mathematical Society, 1925, 27(3): 345-396.

[7] S. Pigola, M. Rigoli and A. G. Setti, Constancy of p-harmonic maps of finite q-energy into non-positively curved manifolds, Mathematische Zeitschrift, 258(2), 347-362.

[8] L. S. Pontryagin, R. V. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko The Mathematical Theory of Optimal processes, Wileylnterscience, New York, 1962.

[9] R. T. Rockafellar Generalized Hamiltonian Equations for Conevx problems of Lagrange, Pacific J. Math., 33:411-428, 1970.

[10] R. Shoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Commentarii Mathematici Helvetici 51(1), 333-341.

[11] S. W. Wei, The minima of the p-energy functional, Elliptic and Parabolic Methods in Geometry, A.K. Peters (1996) 171-203

[12] S. W. Wei, J. F. Li and L. Wu, p-Harmonic generalizations of the uniformization theorem and Bochner’s method, and geometric applications, Proceedings of the 2006 Midwest Geometry Conference, Commun. Math. Anal., Conf. 01(2008), 46-68.

[13] S. W. Wei and C. M. Yau, Regularity of p-energy minimizing maps and p-super-strongly unstable indices, J.Geom. Analysis, vol 4, No.2 (1994), 247-272.

[14] L. Wu, S. W. Wei, J. Liu and Y. Li, Discovering Geometric and Topological Properties of Ellipsoids by Curvatures, British Journal of Mathematics and Computer Science, 8(4): 318-329, 2015.