Mechanical Behaviour and Electrical Conductivity of Oxygen Separation Membrane under Uniaxial Compressive Loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Mechanical Behaviour and Electrical Conductivity of Oxygen Separation Membrane under Uniaxial Compressive Loading

Authors: Wakako Araki, Jürgen Malzbender

Abstract:

The mechanical deformation and the electrical conductivity of lanthanum strontium cobalt ferrite oxide under uniaxial compression were investigated at various temperatures up to 1073 K. The material reveals a rather complex mechanical behaviour related to its ferroelasticity and completely different stress-strain curves are obtained during the 1st and 2nd loading cycles. A distinctive ferroelastic creep was observed at 293 K whilst typical ferroelastic stress-strain curve were obtained in the temperature range from 473 K to 873 K. At 1073 K, on the other hand, high-temperature creep deformation was observed instead of ferroelastic deformation. The conductivity increases with increasing compressive stress at all the temperatures. The increase in conductivity is related to both geometrical and piezoelectric effects. From 293 K to 873 K, where the material exhibits ferroelastic behaviour, the variation in the total conductivity decreases with increasing temperature. The contribution of the piezoelectric effect to the total conductivity variation also decreases with increasing temperature and the maximum in piezoconductivity has a value of about 0.75 % at 293 K for a compressive stress of 100 MPa. There is no effect of domain switching on conductivity except for the geometric effect. At 1073 K, the conductivity is simply proportional to the compressive strain.

Keywords: Ferroelasticity, Piezoconductivity, oxygen separation membrane, perovskite.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078007

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757

References:


[1] Teraoka Y, Zhang HM, Furukawa S, Yamazoe N. Chem Lett 1985; 11:1743.
[2] Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ. J Electrochem Soc 1996; 143:2722.
[3] Kharton VV, Kovalevsky AV, Tikhonovich VN, NaumovichEN, Viskup AP. Solid State Ionics 1998; 110:53.
[4] Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC. J Membr Sci 2008; 320:13.
[5] Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stöver D. Solid State Ionics 2005;176:1341.
[6] Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T. Solid State Ionics 2005;176:1145.
[7] Li K, Tan X, Liu Y. J Membr Sci 2006; 272:1.
[8] Kleveland K, Orlovskaya N, Grande T, Moe AMM, Einarsrud MA, Breder K, Gogotsi G. J Am Ceram Soc 2001;84:2029.
[9] Orlovskaya N, Lugocy M, Pathak S, Steinmetz D, Lloyd J, Fegely L, Radovic M, Payzant EA, Lara-Curzio E, Allard LF, Kuebler J. J Power Sources 2008;182:230.
[10] Huang BX, Malzbender J, Steinbrech RW. Wessel E, Penkalla HJ, Singheiser L. J Membr Sci 2010; 349:183.
[11] Huang BX, Malzbender J, Steinbrech RW. J Mater Sci 2011; 26:1388.
[12] Kimura Y, Kushi T, Hashimoto S, Amezawa K, Kawada T. J Am Ceram Soc 2012; 95:2608.
[13] Huang BX, Steinbrech RW, Baumann S, Malzbender J. Acta Mater 2012;60:2479.
[14] Huang BX, Thermo-mechanical properties of mixed ion-electron conducting membrane. Faculty of Mechanical Engineering, RWTH Aachen, 2010; Huang BX, J Malzbender, Steinbrech RW. Solid State Ionics submitted.
[15] Orlovskaya N, Browning N, Nicholls A. Acta Mater 2003; 51:5063.
[16] Lugovy M, Slyunyayev V, Orlovskaya N, Verbylo D, Reece MJ. Phys Rev B 2008; 78:024107.
[17] Vullum PE, Holmestad R, Lein HL, Mastin J, Einarsrud MA, Grande T. Adv Mater 2007;19:4399.
[18] K Aizu. Phys Rev B 1970; 2:754.
[19] Lengsdorf R, Ait-Tahar M, Saxena S, Ellerby M, Khomskii DI, Micklitz H, Lorentz T,Abd-Elmeguid MM. Phys Rev B 2004; 69: 140403.
[20] Rata AD, Herklotz A, Nenkov K, Schultz L, Dörr K. Phys Rev B 2008;100:076401.
[21] Zhu QX, Wang W, Zhao XQ, Li XM, Wang Y, Luo HS, Chan HLW, Zheng R. J Appl Phys 2012;111:103702.
[22] Sharma V, Hossu MR, Lee WH, Koymen AR, Priya S. J Mater Sci 2007;42:9841.
[23] Sharma V, Hossu MR, Lee WH, Koymen AR, Priya S. Appl Phys Lett 2006;89:202902.
[24] Tiele C, Dörr K, Fähler S, Schultz L, Meyer DC, Levin AA, Paufler P. Appl Phys Lett 2005;87:262502.
[25] Sheng WX, Fang CJ, Hui K, Jun CZ, Wei L. J Alloys Comp 2011; 509:5029.
[26] Leist T, Webber KG, Granzow T, Aulbach E, Suffner J, Rödel J. J Appl. Phys. 2011;109:054109.
[27] Fett T, Thun G. J Mater Sci Lett. 1998; 17:1929.
[28] Forrester JS, Kisi EH. J Eur Ceram Soc 2004; 24:595.
[29] Huang BX, Steinbrech RW, Baumann S, Malzbender J. Acta Mater 2012;60:2479.