Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 300

Search results for: Stokes’ Theorem

300 On the Maximum Theorem: A Constructive Analysis

Authors: Yasuhito Tanaka

Abstract:

We examine the maximum theorem by Berge from the point of view of Bishop style constructive mathematics. We will show an approximate version of the maximum theorem and the maximum theorem for functions with sequentially locally at most one maximum. Downloads 1763
299 Toward a New Simple Analytical Formulation of Navier-Stokes Equations

Abstract:

Incompressible Navier-Stokes equations are reviewed in this work. Three-dimensional Navier-Stokes equations are solved analytically. The Mathematical derivation shows that the solutions for the zero and constant pressure gradients are similar. Descriptions of the proposed formulation and validation against two laminar experiments and three different turbulent flow cases are reported in this paper. Even though, the analytical solution is derived for nonreacting flows, it could reproduce trends for cases including combustion. Downloads 1939
298 One Some Effective Solutions of Stokes Axisymmetric Equation for a Viscous Fluid

Authors: N. Khatiashvili, K. Pirumova, D. Janjgava

Abstract:

The Stokes equation connected with the fluid flow over the axisymmetric bodies in a cylindrical area is considered. The equation is studied in a moving coordinate system with the appropriate boundary conditions. Effective formulas for the velocity components are obtained. The graphs of the velocity components and velocity profile are plotted.

Keywords: Stokes system, viscous fluid.

297 Fermat’s Last Theorem a Simple Demonstration

Authors: Jose William Porras Ferreira

Abstract:

This paper presents two solutions to the Fermat’s Last Theorem (FLT). The first one using some algebraic basis related to the Pythagorean theorem, expression of equations, an analysis of their behavior, when compared with power  and power  and using " the “Well Ordering Principle” of natural numbers it is demonstrated that in Fermat equation . The second one solution is using the connection between  and power  through the Pascal’s triangle or  Newton’s binomial coefficients, where de Fermat equation do not fulfill the first coefficient, then it is impossible that:

zn=xn+yn for n>2 and (x, y, z) E Z+ - {0}

296 Generalized Stokes’ Problems for an Incompressible Couple Stress Fluid

Authors: M.Devakar, T.K.V.Iyengar

Abstract:

In this paper, we investigate the generalized Stokes’ problems for an incompressible couple stress fluid. Analytical solution of the governing equations is obtained in Laplace transform domain for each problem. A standard numerical inversion technique is used to invert the Laplace transform of the velocity in each case. The effect of various material parameters on velocity is discussed and the results are presented through graphs. It is observed that, the results are in tune with the observation of V.K.Stokes in connection with the variation of velocity in the flow between two parallel plates when the top one is moving with constant velocity and the bottom one is at rest.

295 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation

Authors: M. Zamani, O. Kahar

Abstract:

Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.

294 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan

Abstract:

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package.

293 Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method

Authors: Lina Wu, Jia Liu, Ye Li

Abstract:

The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting. Downloads 687
292 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem

Abstract:

In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.

291 Positive Solutions for Semipositone Discrete Eigenvalue Problems via Three Critical Points Theorem

Authors: Benshi Zhu

Abstract:

In this paper, multiple positive solutions for semipositone discrete eigenvalue problems are obtained by using a three critical points theorem for nondifferentiable functional. Downloads 1062
290 Constructive Proof of Tychonoff’s Fixed Point Theorem for Sequentially Locally Non-Constant Functions

Authors: Yasuhito Tanaka

Abstract:

We present a constructive proof of Tychonoff’s fixed point theorem in a locally convex space for uniformly continuous and sequentially locally non-constant functions.

289 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

Authors: Xin Luo, Jin Huang, Pan Cheng

Abstract:

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.

288 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede. Downloads 248
287 Extremal Properties of Generalized Class of Close-to-convex Functions

Abstract:

Let Gα ,β (γ ,δ ) denote the class of function f (z), f (0) = f ′(0)−1= 0 which satisfied e δ {αf ′(z)+ βzf ′′(z)}> γ i Re in the open unit disk D = {z ∈ı : z < 1} for some α ∈ı (α ≠ 0) , β ∈ı and γ ∈ı (0 ≤γ <α ) where δ ≤ π and α cosδ −γ > 0 . In this paper, we determine some extremal properties including distortion theorem and argument of f ′( z ) . Downloads 1084
286 A Constructive Proof of the General Brouwer Fixed Point Theorem and Related Computational Results in General Non-Convex sets

Authors: Menglong Su, Shaoyun Shi, Qing Xu

Abstract:

In this paper, by introducing twice continuously differentiable mappings, we develop an interior path following following method, which enables us to give a constructive proof of the general Brouwer fixed point theorem and thus to solve fixed point problems in a class of non-convex sets. Under suitable conditions, a smooth path can be proven to exist. This can lead to an implementable globally convergent algorithm. Several numerical examples are given to illustrate the results of this paper.

285 A Sandwich-type Theorem with Applications to Univalent Functions

Abstract:

In the present paper, we obtain a sandwich-type theorem. As applications of our main result, we discuss the univalence and starlikeness of analytic functions in terms of certain differential subordinations and differential inequalities. Downloads 1065
284 On the Central Limit Theorems for Forward and Backward Martingales

Authors: Yilun Shang

Abstract:

Let {Xi}i≥1 be a martingale difference sequence with Xi = Si - Si-1. Under some regularity conditions, we show that (X2 1+· · ·+X2N n)-1/2SNn is asymptotically normal, where {Ni}i≥1 is a sequence of positive integer-valued random variables tending to infinity. In a similar manner, a backward (or reverse) martingale central limit theorem with random indices is provided. Downloads 2549
283 Cryptographic Attack on Lucas Based Cryptosystems Using Chinese Remainder Theorem

Authors: Tze Jin Wong, Lee Feng Koo, Pang Hung Yiu

Abstract:

Lenstra’s attack uses Chinese remainder theorem as a tool and requires a faulty signature to be successful. This paper reports on the security responses of fourth and sixth order Lucas based (LUC4,6) cryptosystem under the Lenstra’s attack as compared to the other two Lucas based cryptosystems such as LUC and LUC3 cryptosystems. All the Lucas based cryptosystems were exposed mathematically to the Lenstra’s attack using Chinese Remainder Theorem and Dickson polynomial. Result shows that the possibility for successful Lenstra’s attack is less against LUC4,6 cryptosystem than LUC3 and LUC cryptosystems. Current study concludes that LUC4,6 cryptosystem is more secure than LUC and LUC3 cryptosystems in sustaining against Lenstra’s attack. Downloads 416
282 Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem

Abstract:

The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem. Downloads 1202
281 Recursive Wiener-Khintchine Theorem

Authors: Khalid M. Aamir, Mohammad A. Maud

Abstract:

Power Spectral Density (PSD) computed by taking the Fourier transform of auto-correlation functions (Wiener-Khintchine Theorem) gives better result, in case of noisy data, as compared to the Periodogram approach. However, the computational complexity of Wiener-Khintchine approach is more than that of the Periodogram approach. For the computation of short time Fourier transform (STFT), this problem becomes even more prominent where computation of PSD is required after every shift in the window under analysis. In this paper, recursive version of the Wiener-Khintchine theorem has been derived by using the sliding DFT approach meant for computation of STFT. The computational complexity of the proposed recursive Wiener-Khintchine algorithm, for a window size of N, is O(N).

280 Some Applications of Gröbner bases

Abstract:

In this paper we will introduce a brief introduction to theory of Gr¨obner bases and some applications of Gr¨obner bases to graph coloring problem, automatic geometric theorem proving and cryptography. Downloads 4622

Authors: Maharavo Randrianarivony

Abstract:

The objective is to split a simply connected polygon into a set of convex quadrilaterals without inserting new boundary nodes. The presented approach consists in repeatedly removing quadrilaterals from the polygon. Theoretical results pertaining to quadrangulation of simply connected polygons are derived from the usual 2-ear theorem. It produces a quadrangulation technique with O(n) number of quadrilaterals. The theoretical methodology is supplemented by practical results and CAD surface segmentation. Downloads 1066
278 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Abstract:

We study the existence of positive solutions to the three points difference-summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

277 Periodic Solutions for a Third-order p-Laplacian Functional Differential Equation

Authors: Yanling Zhu, Kai Wang

Abstract:

By means of Mawhin’s continuation theorem, we study a kind of third-order p-Laplacian functional differential equation with distributed delay in the form: ϕp(x (t)) = g  t,  0 −τ x(t + s) dα(s)  + e(t), some criteria to guarantee the existence of periodic solutions are obtained.

276 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated. Downloads 1235
275 Lagrange-s Inversion Theorem and Infiltration

Abstract:

Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions. Downloads 1649
274 Fourth Order Accurate Free Convective Heat Transfer Solutions from a Circular Cylinder

Authors: T. V. S. Sekhar, B. Hema Sundar Raju

Abstract:

Laminar natural-convective heat transfer from a horizontal cylinder is studied by solving the Navier-Stokes and energy equations using higher order compact scheme in cylindrical polar coordinates. Results are obtained for Rayleigh numbers of 1, 10, 100 and 1000 for a Prandtl number of 0.7. The local Nusselt number and mean Nusselt number are calculated and compared with available experimental and theoretical results. Streamlines, vorticity - lines and isotherms are plotted. Downloads 1444
273 Multiple Positive Periodic Solutions to a Predator-prey system with Harvesting Terms and Holling II Type Functional Response

Authors: Pan Wang, Yongkun Li

Abstract:

In this paper, a periodic predator-prey system with harvesting terms and Holling II type functional response is considered. Sufficient criteria for the existence of at least sixteen periodic solutions are established by using the well known continuation theorem due to Mawhin. An example is given to illustrate the main result.

272 A new Configurable Decimation Filter using Pascal-s Triangle Theorem

Authors: A. Chahardah Cherik, E. Farshidi

Abstract:

This paper presents a new configurable decimation filter for sigma-delta modulators. The filter employs the Pascal-s triangle-s theorem for building the coefficients of non-recursive decimation filters. The filter can be connected to the back-end of various modulators with different output accuracy. In this work two methods are shown and then compared from area occupation viewpoint. First method uses the memory and the second one employs Pascal-s triangle-s method, aiming to reduce required gates. XILINX ISE v10 is used for implementation and confirmation the filter. Downloads 1456
271 PI Control for Second Order Delay System with Tuning Parameter Optimization

Authors: R. Farkh, K. Laabidi, M. Ksouri

Abstract:

In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem. Downloads 1566