
Approximate Range-Sum Queries over Data Cubes
Using Cosine Transform

Wen-Chi Hou, Cheng Luo, Zhewei Jiang, and Feng Yan

Abstract—In this research, we propose to use the discrete cosine
transform to approximate the cumulative distributions of data cube
cells’ values. The cosine transform is known to have a good energy
compaction property and thus can approximate data distribution
functions easily with small number of coefficients. The derived
estimator is accurate and easy to update. We perform experiments to
compare its performance with a well-known technique - the (Haar)
wavelet. The experimental results show that the cosine transform
performs much better than the wavelet in estimation accuracy, speed,
space efficiency, and update easiness.

Keywords—DCT, Data Cube

I. INTRODUCTION

DATA warehouse is a large collection of integrated data,
built to assist knowledge workers, such as executives,

managers, analysts, etc., to make better and faster decisions. It
is often required that the data be summarized at various levels
of detail and on various combinations of attributes for on-line
analytical processing (OLAP), which allows analysts to gain
insight into the data through a variety of views. Typical OLAP
applications include product performance and profitability,
effectiveness of sales programs or marketing campaigns, sales
forecasting, capacity planning, etc. Data warehousing and
OLAP have increasingly become a focus of the database
industry. OLAP systems generally support a multidimensional
data model, known as a data cube [6]. A range-sum query, a
very common and useful type of query over data cubes, is to
compute the sum of measure attribute values of data cube cells
that fall in the ranges specified by the query. It is very useful in
finding trends and discovering relationships between attributes
in OLAP. To facilitate range-sum query processing, prefix-sum
cubes are proposed [3], [4], [5], [7]. Although these methods
generally can answer range-sum queries quickly, updates to
data cubes can propagate to large portions of the prefix-
sum cubes, incurring tremendous overheads. In addition, these
approaches all require at least as much space as the original
data cubes to store the prefix-sum cubes.

Approximate query answering present an appealing alter-
native to conventional query processing when exact answers
are too slow or costly to derive. Fast approximate answers
are very useful in exploratory data analyses, such as OLAP,
decision support, and data mining. They provide quick sum-
mary information to users to help refine search in a potentially

W. Hou, Z. Jiang, and F. Yan are with the Department of Computer Science,
Southern Illinois University, Carbondale, IL, 62901 Email: hou@cs.siu.edu,
zjiang@cs.siu.edu, and fyan@cs.siu.edu.

C. Luo is with the Department of the Mathematics and Computer Science,
Coppin State University, 2500 West North Avenue, Baltimore, MD, 21216
Email: cluo@coppin.edu

tedious mining process or in an ad-hoc drill-down and roll-up
in OLAP [1]. In this research, we attempt to find a method
that not only can provide fast approximate answers to range-
sum queries, but also uses very little space. In addition, the
approach is dynamically updatable in the presence of updates
to data cubes.

In this research, we propose to use discrete cosine transform
(DCT) to approximate prefix-sum cubes. The discrete cosine
transform is known to have a good energy compaction property
and thus can approximate the distribution of data cube cells’
values easily using only a few low frequency terms. The
derived estimator is accurate and easy to update. We perform
experiments to compare its performance with a well-known
technique, the (Haar) wavelet [11], [15]. Experimental results
show that DCT performs better than the wavelet in estimation
accuracy, speed, space efficiency, and update easiness.

The paper is organized as follows. Section II reviews
previous studies on data cube compression and prefix-sum
cubes. Section 3 introduces the notations. Section 4 discusses
approximation using cosine transform. Section 5 presents the
range-sum query estimation. Section 6 discusses the updatabil-
ity of the cosine estimator. Section 7 presents the experimental
results. Section 8 concludes the paper.

II. RELATED WORK

The condensed cube [16] condenses tuples from different
cuboids that are aggregated from the same set of tuples into
one tuple. The quotient cube method [8] partitions a cube
into classes of cells with identical aggregate values to save
storage space. Dwarf [14] accomplishes size reduction of data
cubes by factoring redundant prefixes and suffixes out of
the data warehouse. Unfortunately, the constructions of such
cubes are generally complex and the effectiveness of these
reduction methods heavily depend upon the properties of the
data themselves. For range-sum queries, substantial portions
of the size-reduced cubes may have to be accessed. Li et al.
[10] indicated that poor query performance was observed in
condensed and quotient cubes.

Quasi-cubes [2] slice the data cubes and approximate the
distributions of subcubes by linear functions. It is not clear
how range-sum queries can be answered when subcubes par-
tially intersect with the ranges of queries. In addition, updates
are difficult to handle on the fly and periodical reconstructions
of the linear functions may be required.

To facilitate range-sum query processing, Ho et al. [7] com-
puted the prefix sums of data cubes. Although this method can
answer queries fast, an update in the worst case can propagate

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4217International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

to the entire prefix-sum cube, which is as large as the original
data cube. To control the cascading of updates, Geffner et
al. [4], [5] decomposed the prefix-sum cubes recursively and
Chan et al. [3] organized the prefix-sum cubes hierarchically;
but the complexity of update still increases exponentially with
the number of dimensions. In general, update propagation
is a common problem for all these prefix-sum data cube
approaches. Note that all these approaches require tremendous
amounts of space, at least as large as the sizes of the original
data cubes, to store the prefix-sum cubes.

The wavelet transforms [13] decompose the original signal
by applying high-pass and low-pass filters repeatedly until a
predefined decomposition level is reached. The Haar trans-
form is conceptually simple and fast. It is proved that the
largest coefficients in absolute value carry the most important
information of the original signal in the Haar transform.
Thus, the original signal can be compressed using a small
number of coefficients that have largest absolute values. The
wavelet transform has been used to compress histograms for
selectivity estimation [11]. Vitter et al. [15] compressed the
data cubes using the Haar wavelet and showed that estimates
of aggregation queries can be derived quickly and accurately.
Matias et al [12] have enhanced the method with a dynamic
update scheme for its coefficients.

In this study, we use the discrete cosine transform (DCT)
to approximate the cumulative distribution of the measure
attribute values in the data cubes. DCT is known to have a
good energy compaction property and thus can approximate
a distribution easily using a few (low-frequency) coefficients.
DCT also has a simple and efficient update method. Since
the domains of dimension attributes are all discrete or already
discretized, we shall use ”discrete cosine transform” and
”cosine transform” interchangeably in the paper for simplicity.

The wavelet method [15] is most relevant to our approach
as both attempt to apply mathematical techniques to compress
the data cubes. We shall have more in depth comparisons of
the two approaches in subsequent sections.

III. NOTATIONS

A. Attribute Value Normalization

Consider a data cube with d dimension attributes X1, . . .,
Xd. By converting a categorical domain to numerical, all
dimension attributes can be viewed as numerical. Let M be a
measure attribute whose values are of interest. We assume M
has the set of real numbers R as its domain.

To simplify notations and algorithm implementation, dimen-
sion attribute values are normalized to a predetermined domain
[0, 1]. Let maxXi and minXi be the maximal and minimal
values of attribute Xi, respectively. Then, each value xi of Xi

can be normalized as follows:

xz
i =

xi −min Xi

max Xi −min Xi
, min Xi ≤ xi ≤ max Xi

(1)
From now on, we shall assume all attribute values are

so normalized and shall not distinguish xifrom xz
i , unless

otherwise stated.

B. Range-Sum Queries

Let X = (X1, . . . , Xd) be the set of dimension attributes.
For each 1≤ i≤ d, denoted by xi is a value of the attribute
Xi. Given x = (x1, . . . , xd) ∈ [0, 1]d, and y = (y1, . . . ,
yd) ∈ [0, 1]d, we say x ≤ y if xi≤ yi for all i=1, . . . , d.

We assume all range constraints in a range-sum query have
the form ai < Xi ≤ bi. Other forms of range constraints,
such as ai ≤ Xi ≤ bi, ai ≤ Xi < bi, ai < Xi < bi can
all be converted to this form. For example, ai ≤ Xi ≤ bi

can be rewritten as a−
i < Xi ≤ bi where a−

i is largest Xi

value that is smaller than ai. Let {Xi1, ...,Xik} be the set of
attributes on which range constraints, such as ai < Xi ≤ bi,
are posted in the queries. By denoting ai = 0 and bi = 1 for
i /∈ {i1, ..., ik}, a range-sum query Q(a, b), where a = (a1,
. . . , ad) ∈ [0, 1]d, b = (b1, . . . , bd) ∈ [0, 1]d, and ai ≤ bi

for all i = 1, . . ., d, is to compute the sum of measure attribute
values for those cells whose dimension attribute values satisfy
ai < Xi ≤ bi for all 1 ≤ i ≤ d.

C. Empiric Distribution

Consider a random variable M that has a cumulative distri-
bution function F . If F is known, the probability of M falling
in the range (a, b] is

P{a < X ≤ b} = F (b)− F (a) (2)

For simplicity, we shall use the term “distribution” for “cu-
mulative distribution” from now on. The empiric (cumulative)
distribution represents exactly the data distribution of the data
cube without losing any information. Consider a data cube as
a sample from the measure attribute domain R. Each cell of
the data cube can be viewed as an observation. Given a set
of n non-zero (measure attribute) observations {v1, ..., vn},
whose coordinates in the data cube are {y1, y2, . . . , yn}, the
empiric distribution function F̂ (x) is defined by

F̂ (x) =
∑

k

vk, whose yk ≤ x, x ∈ [0, 1]d (3)

Then given a sample of a random variable M , we can use the
empirical distribution constructed from the sample to estimate
the distribution of M .

Consider a one-dimensional example here. Given a sample
of 6 measure attribute values {3, 1, 4, 1, 2, 2} at coordinates
{0.2, 0.3, 0.4, 0.5, 0.6, 0.8}, we can estimate the probability
P{X ≤ 0.4} as the ratio of the sum of the values whose
coordinates are less than or equal to 0.4 (i.e., 8) to the sum
of all the values (i.e., 13), that is 8/13.

In this paper, our goal is to find an approximation, denoted
by F̂m(X), to the empiric distribution F̂ (X). The approxima-
tion shall use much less space and yet with little information
loss.

IV. EMPIRICAL DISTRIBUTION ESTIMATION VIA COSINE
SERIES

In this section, we discuss how to derive an estimator for
the empiric distribution.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4218International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

Let the cosine series be denoted as φi(x), i ≥ 0,

φi(x) =
{

1, i = 0;√
2 cos iπx, i > 0;

That is, {1,
√

2cosπx,
√

2cos2πx, . . .,
√

2cosiπx, . . .}. Let
Φi(x) =

∫ 1

x
φi(u)du, That is,

Φi(x) =
{

1− x, i = 0;
−√2 sin iπx

/
iπ, i > 0;

We assume for simplicity all dimension attributes have the
same domain size D. Consider a d-dimensional data cube with
n non-zero measure attribute values (or cell values) v1, v2, . . . ,
vn, whose coordinates are y1, y2, . . . , yn, respectively. Then,
the empirical distribution F̂ (x1, ..., xd) of the cells’ values
can be represented by a cosine series with Dd coefficients,
β̂i1,...,id

0 ≤ i1, ..., id ≤ D − 1, as

F̂ (x1, ..., xd) =
D−1∑
i1=0

....
D−1∑
id=0

∧
β

i1,...,id

d∏
j=1

φij
(xj) (4)

where β̂i1,...,id
’s are

β̂i1,...,id
=

n∑
k=1

vk(
d∏

j=1

Φ ij
(ykj)) (5)

where ykj is the jth-dimension coordinate of yk,1 ≤ k ≤ n.
While the empirical function F̂ (x1, ..., xd) describes the ex-

act distribution of tuples, the storage of such a function could
be large, especially when the number of domain attributes d
and the domain sizes thereof are large. To save storage space,
we opt to approximate the function by a smaller number of
cosine coefficients.

The cosine transform has a good energy compaction prop-
erty; most energy is preserved in the first few low frequency
terms. Thus, one can approximate, without much information
loss, the empirical distribution F̂ (x1, ..., xd) with its first md

(low frequency) terms, denoted F̂m, as

F̂ (x1, ..., xd) ≈ F̂m(x1, ..., xd) =
m−1∑
i1=0

....

m−1∑
id=0

∧
β

i1,...,id

d∏
j=1

φij
(xj)

(6)
In general, the larger the m value, the better the approxima-

tion. It is noted that only the md coefficients (real numbers)
need to be stored for the approximate frequency function. In
contrast, besides the coefficients, the wavelet needs to store
the indexes of coefficients too (to indicate which terms are
selected). Thus, the cosine method is more space-efficient than
the wavelet method.

Example 4.1: Consider a one-dimensional data cube with
6 non-zero measure attribute values v’s: { 2, 1, 5, 4, 2,1} and
their respective coordinates y’s :{0.12, 0.32, 0.33, 0.66, 0.80,
0.90}. The cosine transform of this distribution is derived as
follows.

β̂0 =
6∑

j=1

vjΦ0(yj) =
6∑

j=1

vj(1− yj) = 7.65

β̂1 =
6∑

j=1

vjΦ1(yj) =
6∑

j=1

vj [−
√

2
π

sinπyj)] = −4.8951

The estimator of the empiric distribution with 2 coefficients
is F̂2(x) = 7.65− 4.8951(

√
2 cos πx).

V. ESTIMATION OF RANGE-SUM QUERIES

In this section, we elaborate on the estimation of range-sum
queries using the approximate empiric distributions derived in
the previous section.

Let us illustrate our idea through a 1-dimensional case.
Suppose X is a random variable such that X ∈ [0, 1] with
a cumulative distribution function F (x). The probability that
a < X ≤ b is

P{a < X ≤ b} = F (b)− F (a) ≈ F̂m(b)− F̂m(a) (7)

Let us extend X to a d-variate random vector. Let a =
(a1, ..., ad) ∈ [0, 1]d, b = (b1, ..., bd) ∈ [0, · · · 1]d, and a < b
A vertex of the hyperinterval (a, b]

(a, b] = {x = (x1, ..., xd) ∈ [0, 1]d : a1 < x1

≤ b1, ..., ad < xd ≤ bd} (8)

is denoted as u = (u1, ..., ud) ∈ [0, 1]d with ui ∈ {ai, bi}
for i = 1, . . ., d. Let Δk(a, b) be the set of all vertices u
with ui = ai for exactly k coordinates and uj = bj for the
remaining coordinates. Then,

P{ai < Xi ≤ bi, ∀ 1 ≤ i ≤ d}
=

∑d

k=0
(−1)k

∑
u∈Δk(a,b)

F (u) (9)

Thus, the range-sum query Q(a, b) is estimated as

Q(a, b) ≈
∑d

k=0
(−1)k

∑
u∈Δk(a,b)

F (u). (10)

Example 5.1. Suppose d = 2, a = (a1, a2) ∈ [0, 1]d, b =
(b1, b2) ∈ [0, 1]d, a1 ≤ b1, a2 ≤ b2. Then, by Eq. (9)

P{ai < Xi ≤ bi, ∀ 1 ≤ i ≤ 2}
= F (b1, b2) + F (a1, a2)− F (a1, b2)− F (b1, a2).

Algorithm 1 summarizes the computation of a range-sum
query Q(a, b).

The above algorithm calls Empiric-Distribution, depicted
in Algorithm 2, to compute the empirical distribution of the
measure attribute values F̂m(p) (i.e., Eq.(6) at a specific point
p.

A. Storage of the Estimator

By utilizing the good energy compaction property, one
can further filter out high frequency terms without much
information loss. A technique, called Triangle Sampling [9]
can be applied. It stores only those coefficients whose indexes
satisfy i1 + + id ≤ m − 1. Thus, the number of the
coefficients finally stored is C(m + d − 1, d) ≈ md/d!,
which is much smaller than md. Note that the indexes (i1,
. . ., id) of the coefficients need not be stored because they are
unique and can be derived on the fly.

For example, consider a 2-dimensional case (d = 2) and m
has been set to 3. Then, there will be md (=32) coefficients in
the approximation function, denoted as Ci,j , 0 ≤ i, j ≤ m−1.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4219International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

Algorithm 1: Range-sum(m,a,b,β[],T)
Input: an integer m > 0, two vectors a = (a1, . . ., ad),

b = (b1, . . ., bd), l ≤ ai ≤ bi ≤ r, and md

coefficients {β[0, . . ., 0], . . ., β[m− 1, . . .,m− 1]}
of the orthogonal series estimators F̂m(x).

Output: an estimation of Q(a, b).

begin
prob ← 0;
k ← 1;
for i← 0 to 2d − 1 do

for j ← 0 to d− 1 do
if i mod 2j = 0 then

p[j] = a[j];
k ← (−k);

end
else

p[j] = b[j];
end

end
prob ← prob +k×
Empiric-Distribution(m, p, β[]);

end
if prob> 0 then

return prob;
end
else

return 0;
end

end

Algorithm 3: Empiric-Distribution(m, p, β[])
Input: an integer m > 0, a vector p = (b1, . . ., bd),

l ≤ bi ≤ r, and md coefficients
{β[0, . . ., 0], . . ., β[m− 1, . . .,m− 1]} of the
orthogonal series estimators F̂m(p).

Output: the empiric distribution F̂m(p) valued at p.

begin
s← 0;
k ← 1;
for i1 ← 0 to m− 1 do

. ;
for id ← 0 to m− 1 do

s← s + β[i1, . . . , id]Πd
j=1φij

(pj);
end

end
return s;

end
Fig. 1. Compute the Empiric Distribution F̂m(p) at p

Algorithm 2: Empiric-Distribution(m, p, β[])
Input: an integer m > 0, a vector p = (b1, . . ., bd),

l ≤ bi ≤ r, and md coefficients
{β[0, . . ., 0], . . ., β[m− 1, . . .,m− 1]} of the
orthogonal series estimators F̂m(p).

Output: the empiric distribution F̂m(p) valued at p.

begin
s← 0;
k ← 1;
for i1 ← 0 to m− 1 do

. ;
for id ← 0 to m− 1 do

s← s + β[i1, . . . , id]Πd
j=1φij

(pj);
end

end
return s;

end

By triangle sampling, only 6 (=C(m + d − 1, d)) of them
that satisfy the condition: i1 + i2 ≤ m−1 = 2, are kept. They
are: C0,0, C0,1, C0,2, C1,0, C2,0, C1,1. We will incorporate
this technique in our implementation.

VI. DYNAMIC MAINTENANCE OF THE ESTIMATOR

As observed from Eq. (5), each coefficient β̂i1,...,id
of the

transform is basically the sum of the product of the measure
attribute values and the products of basis functions on the
measure attribute value’s coordinates. Therefore, for insertion
or deletion of a measure attribute value, we can just compute
the “contribution” of the value to the transform and then
combine them with the old coefficients. That is, for insertion
of a new value t at y = (y1, y2, . . . , yd), β̂i1,...,id

is updated
as

β̂i1,...,id
= β̂i1,...,id1 + t

d∏
j=1

Φij
(yj) (11)

Similarly, for deletion of a value t at y = (y1, y2, . . . , yd), it
is updated as

β̂i1,...,id
= β̂i1,...,id1 − t

d∏
j=1

Φij
(yj) (12)

An update to the measure attribute value can be accom-
plished by a deletion followed by an insertion. Let m be the
number of coefficients of the estimator. The complexities of
an insertion, a deletion, and an update are all O(m).

Coefficients can be updated easily and dynamically. This
property makes the cosine transform well suited in data stream
environments, where tuples continuously flow in. The updates
of the coefficients can be performed on the fly as well as in
batch. In addition, the computation workload can be easily
distributed among processors as the “contributions” of tuples
can be computed separately.

VII. EXPERIMENTAL RESULTS

In this section, we report experimental results of estimating
range-sum queries using the cosine and wavelet methods.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4220International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

A. Experiment Setup

We have implemented both methods in C++ and compiled
them with GNU C/C++ Compiler V3.2.3. The test platform
is Redhat Linux Enterprise 4 running on a Dell Precision 360
workstation with 3.3 GHZ CPU and 1GB RAM.

Experiments are run on both synthetic and real-life datasets.
The purpose of using synthetic data is to study the methods
in relation to different characteristics of data in a controlled
environment. The synthetic relations are generated following
the TPC-D benchmark [18] with attribute values distributed
Zipfianly [17]. We generate distributions with two different
z values, 0.5, and 1.0, which represent, roughly speaking,
a slightly skewed and skewed distribution, respectively. The
domain size of each dimension attribute is 1, 024 and the sum
of measure attribute values is 106.

We have also used a real-life dataset from the Bureau of
Census [19]. We select the data for a period of three-months,
from January to March 2004. The dataset has around 140, 000
tuples for each month. The dimension attributes are Age,
Education and State, whose ranges are [1, 99], [1, 46] and
[1, 99], respectively, and the measure attribute is count (or the
number of tuples).

B. Estimation Accuracy

We ran 100 queries with randomly chosen ranges on di-
mension attributes. The accuracy of estimation is measured
by average relative errors.

1) Performance on Synthetic Datasets: Figures 2 and 3
show the estimation results of range-sum queries over two-
dimensional data cube with Zipf parameters, 0.5 and 1.0,
respectively. As shown in the figures, in general, the greater
the number of coefficients used, the better the results for both
techniques.

As shown in Figure 2, the cosine method performed better
than the wavelet using the same number of coefficients for the
slightly skewed distribution. The wavelet generated average
errors ranging from 3.93% for 100 coefficients to 1.07% for
2, 000 coefficients, while ours from 1.02% to 0.33% for the
same number of coefficients.

Fig. 2. Two-dimensional Queries, z=0.5

Notice that with only 100 coefficients, our estimates are
already very accurate (around 1% error) in both cases. But
the accuracy does not improve much when the number of
coefficients increases further. This demonstrates the good
energy compaction property of the cosine transform.

Fig. 3. Two-dimensional Queries, z=1.0

Fig. 4. Three-dimensional Queries, z=0.5

As mentioned earlier, the cosine transform stores only the
coefficients, but the wavelet needs to store the indexes with
the coefficients. Thus, for the same number of coefficients, the
wavelet uses at least twice as much space as ours. This further
demonstrates the efficiency of the cosine transform.

As the distributions become more skewed (i.e., z = 1.0),
it becomes more difficult to capture the sharp changes in fre-
quency and thus estimation accuracy degrades. Nevertheless,
our method demonstrates an even larger performance edge
over wavelet in the more skewed case (z = 1.0) than in the
smoother case (z = 0.5).

Figures 4 and 5 show the results of range-sum queries
with constrains on three-dimensional data cubes with Zipf
parameters 0.5 and 1.0, respectively. In general, the higher the
dimension, the greater the number of coefficients is needed
to achieve a desired accuracy. This is mainly due to the
increased number of frequency values to be approximated (or
compressed) in higher dimensional spaces. Again, our method
performed better than the wavelet method for the same number
of coefficients. In Figure 4, wavelet generated average errors
ranging from 28.04% for 1, 000 coefficients to 8.25% for
10, 000 coefficients, while ours from 6.9% to 2.67% for the

Fig. 5. Three-dimensional Queries, z=1.0

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4221International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

Fig. 6. Six-Dimensional Queries, z=0.5

Fig. 7. Six-Dimensional Queries, z=1.0

same number of coefficients. Wavelet’s errors are about 4 times
larger than ours.

As distributions become more skewed, the errors become
greater like in the 2-dimensional cases. For example, at z =
1.0, the wavelet generated average errors ranging from 54.45%
for 1, 000 coefficients to 29.88% for 10, 000 coefficients while
our approach generated from 8.68% to 0.81% for the same
number of coefficients. The wavelet’s errors are about 6 to 37
times larger than ours.

In Figures 6 and 7, we show the results of six-dimensional
queries. With each dimension partitioned into 16 regions, it
results in a 166(= 16 million)-bucket histogram. The wavelet
generated large errors (e.g., > 100%) for small numbers of
coefficients (e.g., 1, 000, 2, 000, etc). Even for the largest
number of coefficients we tested, i.e., 8, 000 coefficients, the
errors are still very large, for example, 49.5% for z = 0.5 and
59.3% for z = 1.0. Due to the large errors of wavelet, we
present only the results of cosine series in the following.

As a short summary, the cosine transform performs much
better than the wavelet in accuracy. Nevertheless, all these two
methods use much less space than a prefix-sum cube method,
which requires at least as large space as the original data cube
(1024d cells).

2) A Real Dataset: Figures 8 and 9 show the results on the
real dataset.

As in the synthetic experiments, our method performs better
than the wavelet. For example, with only 100 coefficients,
as shown in Figure 8, the errors of the wavelet and cosine
methods are 12.45% and 1.68%, respectively.

For three-dimensional queries, as shown in Figure 9, with
100 coefficients, our error is already below 10% while the
wavelet still has an error as high as 54%.

Fig. 8. Real Dataset: Two-dimension Queries

Fig. 9. Real Dataset: Three-dimension Queries

C. Update and Estimation Speeds

As mentioned earlier, the higher the number of dimensions,
the greater the number of coefficients is required for an
estimator to achieve an acceptable accuracy. We assume that
the estimators have 400, 3, 000, 8, 000 coefficients for 2-
dimensional 3-dimensional, and 6-dimensional cases, respec-
tively, which we believe are generally large enough to yield
reasonable accuracy.

Let m be the number of coefficients used in the estimators.
It takes O(m) time to update a cosine estimator, as shown in
Eqs. (11) and (12). On the other hand, wavelet takes O(logH)
time to update the coefficients, where H is the size of the
underlying histogram (or the number of cells in the data cube),
recalling that wavelet is a histogram-based method. Note
that the size of histogram generally increases exponentially
with the number of dimensions (d) of the histogram, i.e.,
H = |D|d, where |D| is the size of each dimension attribute
domain (assumed to be the same for all dimension attributes).
Consequently, Table I shows wavelet is much slower in high
dimensional cases.

TABLE I
UPDATE SPEED

Time (μs) 2-dimension 3-dimension 6-dimension
Wavelet 4.7 6,906 —
Cosine 132 1,250 3,002

TABLE II
ESTIMATION SPEED

Time (μs) 2-dimension 3-dimension 6-dimension
Wavelet 210 2,058 —
Cosine 72 389 1,321

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4222International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

The cosine method has a complexity of O(2dm) for a range-
sum query estimation, as demonstrated in Eq. (9). The wavelet
has a complexity of O(2dHlog(H)). Hence, the wavelet
estimator can be very slow in high dimensions, as shown in
Table II.

VIII. CONCLUSIONS

In this paper, we develop a nonparametric statistical range-
sum query estimation approach, which is based upon the
empiric distribution estimation by the cosine series. First, we
derive an estimator for the empiric distribution of measure
attribute values in a data cube, and then use the empiric dis-
tribution estimator to compute the range-sum query estimates.
The empiric distribution estimator can be stored easily and
updated efficiently. The experimental results have shown that
our approach produced much more accurate estimates than the
wavelet method. The proposed method is well suited for on-
line approximate aggregate query estimation over data cubes.
It is simple, accurate, efficient, and adaptive.

REFERENCES

[1] W. Acharya and P. Gibbons and V. Poosala, Aqua: A Fast Decision
Support System Using Approximate Query Answers, 1999, Proc. 25th

VLDB Conference.
[2] D. Barbara and M. Sullivan, Quasi-cubes: Exploiting approximation in

multi-dimensional databases, 1997, SIGMOD Record, 26, 12-17.
[3] C. Chan and Y. Ioannidis, Hierarchical cubes for range-sum queries,

1999, Proc. VLDB, 675-686.
[4] S. Geffner and D. Agrawal and A. Abbadi and T. Smith, Relative prefix

sums: an efficient approach for querying dynamic OLAP Data Cubes,
1999, Proc. ICDE, 328-335.

[5] S. Geffner and D. Agrawal and A. Abbadi, The dynamic data cubes,
2000, Proceeding of International Conference on Extending Database
Technology (EDBT), 237-253.

[6] J. Gray and A. Bosworth and A. Layman and H. Pirahesh, Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and
sub-totals, 1996, Proc. ICDE Conference.

[7] C. Ho and R. Agrawal and N. Megiddo and R. Srikant, Range queries
in OLAP data cubes, 1997, Proc. ACM SIGMOD Conference, 73-88.

[8] L. Lakshmanan and J. Pei and J. Han, Quotient cube: How to summarize
the semantics of a data cube, 2002, Proc. 28th VLDB Conference, 528-
539.

[9] J. Lee and D. Kim and C. Chung, Multi-dimensional Selectivity Estima-
tion Using Compressed Histogram Information, 1999, ACM SIGMOD,
205-214.

[10] S. Li and S. Wang, Semi-closed cube: An effective approach to trading
off data cube size and query response time, Journal of Computer Science
and Technology, 20(3), 367-372.

[11] Y. Matias and J. Vitter and M. Wang, Wavelet-based histograms for
selectivity estimation, 1998, ACM SIGMOD Conference, 448-459.

[12] Y. Matias and J. Vitter and M. Wang, Dynamic Maintenance of Wavelet-
Based Histograms, 2000, Proc 26th VLDB Conference, 101-110.

[13] Y. Nievergelt, Wavelets Made Easy, 1999, Birkhauser.
[14] Y. Sismanis and N. Roussoupoulos and A. Deligiannakis and Y. Kotidis,

Dwarf: Shrinking the petacube, 2002, Proc. ACM SIGMOD Conference,
464-475.

[15] J. Vitter and M. Wang and B. Lyer, Data cube approximation and
histograms via wavelets, 1998, Proc. CIKM, 96-104.

[16] W. Wang and J. L. Feng, Condensed cube: An effective approach to
reducing data cube size, 2002, Proceedings of the 18th International
Conference on Data Engineering.

[17] G. Zipf, Human behavior and the principle of least effort, 1949, Addison-
Wesley.

[18] TPC, TPC benchmark D, decision support, 1995.
[19] BC, http://www.bls.census.gov/sipp/ ftp.html#sipp04, 2004.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4223International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

02
8.

pd
f

