Search results for: layer height
1058 Dissolution of Solid Particles in Liquids: A Shrinking Core Model
Authors: Wei-Lun Hsu, Mon-Jyh Lin, Jyh-Ping Hsu
Abstract:
The dissolution of spherical particles in liquids is analyzed dynamically. Here, we consider the case the dissolution of solute yields a solute-free solid phase in the outer portion of a particle. As dissolution proceeds, the interface between the undissolved solid phase and the solute-free solid phase moves towards the center of the particle. We assume that there exist two resistances for the diffusion of solute molecules: the resistance due to the solute-free portion of the particle and that due to a surface layer near solid-liquid interface. In general, the equation governing the dynamic behavior of dissolution needs to be solved numerically. However, analytical expressions for the temporal variation of the size of the undissoved portion of a particle and the variation of dissolution time can be obtained in some special cases. The present analysis takes the effect of variable bulk solute concentration on dissolution into account.
Keywords: dissolution of particles, surface layer, shrinking core model, dissolution time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41791057 Effect of Different Model Drugs on the Properties of Model Membranes from Fishes
Authors: M. Kumpugdee-Vollrath, T. G. D. Phu, M. Helmis
Abstract:
A suitable model membrane to study the pharmacological effect of pharmaceutical products is human stratum corneum because this layer of human skin is the outermost layer and it is an important barrier to be passed through. Other model membranes which were also used are for example skins from pig, mouse, reptile or fish. We are interested in fish skins in this project. The advantages of the fish skins are, that they can be obtained from the supermarket or fish shop. However, the fish skins should be freshly prepared and used directly without storage. In order to understand the effect of different model drugs e.g. lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid on the properties of the model membrane from various types of fishes e.g. trout, salmon, cod, plaice permeation tests were performed and differential scanning calorimetry was applied.
Keywords: Fish skin, model membrane, permeation, DSC, lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11351056 Effect of Transplant Preparation Method on Yield and Agronomic Traits of True Potato Seed (TPS) Progenies in Sahneh Region
Authors: A. Khourgami, M. Rafiee, H. Jafari, Z. Bitarafan
Abstract:
To study the effect of suitable methods for propagation of True Potato Seed (TPS) progenies, transplant and selection of the best progenies, a factorial experiment base on a randomized complete block design was carried out in the research field of Sahneh region, Kermanshah, Iran during 2009-2010. Five selective progenies from CIP (International Potato Center) including CIP.994013, CIP.994002, CIP.994014, CIP.888006, and CIP.994001 and two transplant preparation methods (Paper pot preparation for mechanical cultivation and preparation in transplant trays for manual cultivation) were studied in three replications. Results showed that different progenies had no significant effect on plant height (cm) and tuber yield (t ha-1), whereas had a significant effect on number of tubers per unit area (m2). There was significant difference between transplant preparation methods for plant height and tuber yield. The interaction effect of progenies and transplant preparation method was not significant for these traits. CIP.888006 progeny and paper pot preparation method produced the highest tuber yields. Also CIP.994002 and CIP.994014 progenies considered as the best progenies under paper pot preparation method due to high yields.Keywords: Potato, Solanum tuberosum, TPS progenies, Transplant preparation method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011055 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.
Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9701054 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds
Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid
Abstract:
A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.Keywords: Dam-break flows, deformable beds, finite element method, finite volume method, linear elasticity, Shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9121053 Removal of CO2 and H2S using Aqueous Alkanolamine Solusions
Authors: Zare Aliabad, H., Mirzaei, S.
Abstract:
This work presents a theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous solutions of MDEA and DEA. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The use of amine solvents for gas sweetening has been investigated using process simulation programs called HYSYS and ASPEN. We use Electrolyte NRTL and Amine Package and Amines (experimental) equation of state. The effects of temperature and circulation rate and amine concentration and packed column and murphree efficiency on the rate of absorption were studied. When lean amine flow and concentration increase, CO2 and H2S absorption increase too. With the improvement of inlet amine temperature in absorber, CO2 and H2S penetrate to upper stages of absorber and absorption of acid gases in absorber decreases. The CO2 concentration in the clean gas can be greatly influenced by the packing height, whereas for the H2S concentration in the clean gas the packing height plays a minor role. HYSYS software can not estimate murphree efficiency correctly and it applies the same contributions in all diagrams for HYSYS software. By improvement in murphree efficiency, maximum temperature of absorber decrease and the location of reaction transfer to the stages of bottoms absorber and the absorption of acid gases increase.Keywords: Absorber, DEA, MDEA, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173121052 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.
Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22391051 Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23
Authors: A. D. Parekh, P. R. Tailor
Abstract:
The Montreal protocol and Kyoto protocol underlined the need of substitution of CFC’s and HCFC’s due to their adverse impact on atmospheric ozone layer which protects earth from U.V rays. The CFCs have been entirely ruled out since 1995 and a long-term basis HCFCs must be replaced by 2020. All this events motivated HFC refrigerants which are harmless to ozone layer. In this paper thermodynamic analysis of cascade refrigeration system has been done using three different refrigerant pairs R13-R12, R290-R23, and R404A-R23. Effect of various operating parameters i.e. evaporator temperature, condenser temperature, temperature difference in cascade condenser and low temperature cycle condenser temperature on performance parameters viz. COP, exergetic efficiency and refrigerant mass flow ratio have been studied. Thermodynamic analysis shows that out of three refrigerant pairs R12-R13, R290-R23 and R404A-R23 the COP of R290-R23 refrigerant pair is highest.
Keywords: Thermodynamic analysis, cascade refrigeration system, COP, exergetic efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38191050 Determination of Some Agricultural Characters of Chickpea (Cicer arietinum L.) Genotypes
Authors: Ercan Ceyhan, Ali Kahraman, Hasan Dalgıç
Abstract:
This research was made during the 2011 and 2012 growing periods in the trial filed of "Research Station for Management of Soil Water and Desertification" according to “Randomized Blocks Design” with 3 replications. Research material was the following chickpea genotype; CA119, CA128, CA149, CA150, CA222, CA250, CA254 and other 2 commercial varieties named as Gökçe and Yaşa. Some agronomical characteristics such as plant height (cm), number of pod per plant, number of seed per pod, number of seed per plant, 1000 seed weight (g) and seed yield (kg ha-1) were determined. Statistically significant variations were found amongst the genotypes for all variables except seeds per pod. Means of the two years showed the range for plant height was from 52.83cm (Gökçe) to 73.00cm (CA150), number of pod per plant was from 14.00 (CA149) to 26.83 (CA261), number of seed per pod was from 1.10 (Gökçe) to 1.19 (CA149 and CA250), number of seed per plant was from 16.28 (CA149) to 31.65 (CA261), 1000 seed weight was from 295.85g (CA149) to 437.80g (CA261) and seed yield was from 1342.73 kg ha-1 (CA261) to 2161.50 kg ha-1 (CA128). Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics.
Keywords: Agricultural characters, chickpea, seed yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361049 Performance of Single Pass Down Stream Solar Air Collector with Inclined Multiple V-Ribs
Authors: Manivannan A, Velmurugan M
Abstract:
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. It is attributed to the formation of a very thin boundary layer at the absorber plate surface commonly known as viscous sub-layer. Thermal efficiency of solar air heater can be improved by providing the artificial roughness on absorber plate is the most efficient technique. In this paper an attempt is made to provide artificial roughness by incorporating inclined multiple V-ribs in the underside of the absorber plate. 60˚V – ribs are arranged inclined to the direction of air flow. Performance of collector estimated theoretically and experimentally. Results of the investigation reveal that thermal efficiency of collector with multiple V-ribs increased by 14%.
Keywords: Artificial roughness, inclined multiple V-ribs, performance, Solar air collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26121048 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: Image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10441047 Analyzing the Shearing-Layer Concept Applied to Urban Green System
Authors: S. Pushkar, O. Verbitsky
Abstract:
Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bioclimatic and passive solar aspects.Keywords: Green rating system, passive solar architecture, shearing-layer concept, urban community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19751046 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.
Keywords: Breadth-first search, BFS, graph ordering, graph algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6321045 Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet
Authors: Mohammad Asif
Abstract:
Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.Keywords: Finite hollow cylinder, Catalyst pellet, Effectiveness factor, Thiele Modulus, Conversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37051044 Design of a Dual Polarized Resonator Antenna for Mobile Communication System
Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan
Abstract:
This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.
Keywords: Metamaterial, electromagnetic band gap, dual polarization, resonator antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25331043 Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model
Authors: Md Rashadul Islam, Mesbah U. Ahmed, Rafiqul A. Tarefder
Abstract:
This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.
Keywords: Falling weight deflectometer test, Finite element model, Flexible pavement, moduli, surface deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28131042 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water
Authors: Krishna Kumar Singh, Praveen Jain
Abstract:
Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.
Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22781041 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato
Abstract:
We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.
Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30861040 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth
Authors: T. Qasim, B. El Masoud, D. Ailabouni
Abstract:
This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.
Keywords: All ceramic, dental crowns, relative wear, chewing simulator, cyclic loading, thermally ageing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9091039 The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet
Authors: Ravinesh C. Deo
Abstract:
This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x»10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra demonstrated the largest eddy structures for the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR.
Keywords: Plane jet, Reynolds number, nozzle-exit conditions, nozzle geometry, aspect ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28231038 New Gate Stack Double Diffusion MOSFET Design to Improve the Electrical Performances for Power Applications
Authors: Z. Dibi, F. Djeffal, N. Lakhdar
Abstract:
In this paper, we have developed an explicit analytical drain current model comprising surface channel potential and threshold voltage in order to explain the advantages of the proposed Gate Stack Double Diffusion (GSDD) MOSFET design over the conventional MOSFET with the same geometric specifications that allow us to use the benefits of the incorporation of the high-k layer between the oxide layer and gate metal aspect on the immunity of the proposed design against the self-heating effects. In order to show the efficiency of our proposed structure, we propose the simulation of the power chopper circuit. The use of the proposed structure to design a power chopper circuit has showed that the (GSDD) MOSFET can improve the working of the circuit in terms of power dissipation and self-heating effect immunity. The results so obtained are in close proximity with the 2D simulated results thus confirming the validity of the proposed model.Keywords: Double-Diffusion, modeling, MOSFET, power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841037 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials
Authors: D. Kliaugaitė, J. K, Staniškis
Abstract:
In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).
All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.
Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.
The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.
Keywords: Polymer packaging, life cycle assessment, resource efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44871036 Improving Fault Resilience and Reconstruction of Overlay Multicast Tree Using Leaving Time of Participants
Authors: Bhed Bahadur Bista
Abstract:
Network layer multicast, i.e. IP multicast, even after many years of research, development and standardization, is not deployed in large scale due to both technical (e.g. upgrading of routers) and political (e.g. policy making and negotiation) issues. Researchers looked for alternatives and proposed application/overlay multicast where multicast functions are handled by end hosts, not network layer routers. Member hosts wishing to receive multicast data form a multicast delivery tree. The intermediate hosts in the tree act as routers also, i.e. they forward data to the lower hosts in the tree. Unlike IP multicast, where a router cannot leave the tree until all members below it leave, in overlay multicast any member can leave the tree at any time thus disjoining the tree and disrupting the data dissemination. All the disrupted hosts have to rejoin the tree. This characteristic of the overlay multicast causes multicast tree unstable, data loss and rejoin overhead. In this paper, we propose that each node sets its leaving time from the tree and sends join request to a number of nodes in the tree. The nodes in the tree will reject the request if their leaving time is earlier than the requesting node otherwise they will accept the request. The node can join at one of the accepting nodes. This makes the tree more stable as the nodes will join the tree according to their leaving time, earliest leaving time node being at the leaf of the tree. Some intermediate nodes may not follow their leaving time and leave earlier than their leaving time thus disrupting the tree. For this, we propose a proactive recovery mechanism so that disrupted nodes can rejoin the tree at predetermined nodes immediately. We have shown by simulation that there is less overhead when joining the multicast tree and the recovery time of the disrupted nodes is much less than the previous works. KeywordsKeywords: Network layer multicast, Fault Resilience, IP multicast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861035 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction
Authors: Aimeng Wang, Dejun Ma, Hui Wang
Abstract:
The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.
Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39231034 Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building
Authors: Bahador Bagheri, Ehsan Salimi Firoozabad, Mohammadreza Yahyaei
Abstract:
As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.
Keywords: Equivalent Static Analysis, Time history method, Response spectrum method, Reinforce concrete building, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161421033 Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint
Authors: P. Saleh, G. Challita, R. Hazimeh, K. Khalil
Abstract:
In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents.
Keywords: Adhesive, Composite adherents, Impact shear, Finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23331032 A Microstrip Antenna Design and Performance Analysis for RFID High Bit Rate Applications
Authors: Ibrahim S. Alnomay, Jihad Y. Alhammad
Abstract:
Lately, an interest has grown greatly in the usages of RFID in an un-presidential applications. It is shown in the adaptation of major software companies such as Microsoft, IBM, and Oracle the RFID capabilities in their major software products. For example Microsoft SharePoints 2010 workflow is now fully compatible with RFID platform. In addition, Microsoft BizTalk server is also capable of all RFID sensors data acquisition. This will lead to applications that required high bit rate, long range and a multimedia content in nature. Higher frequencies of operation have been designated for RFID tags, among them are the 2.45 and 5.8 GHz. The higher the frequency means higher range, and higher bit rate, but the drawback is the greater cost. In this paper we present a single layer, low profile patch antenna operates at 5.8 GHz with pure resistive input impedance of 50 and close to directive radiation. Also, we propose a modification to the design in order to improve the operation band width from 8.7 to 13.8Keywords: Microstrip Antenna, RFID, U-shaped, double layer, circular antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19401031 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints
Abstract:
The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.
Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11431030 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus
Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani
Abstract:
Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.
Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5311029 Experiments and Modeling of Ion Exchange Resins for Nuclear Power Plants
Authors: Aurélie Mabrouk, Vincent Lagneau, Caroline De Dieuleveult, Martin Bachet, Hélène Schneider, Christophe Coquelet
Abstract:
Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work: column experiments and simulations. A software called OPTIPUR was developed, tested and used. The approach simulates the onedimensional reactive transport in porous medium with convectivedispersive transport between particles and diffusive transport within the boundary layer around the particles. The transfer limitation in the boundary layer is characterized by the mass transfer coefficient (MTC). The influences on MTC were measured experimentally. The variation of the inlet concentration does not influence the MTC; on the contrary of the Darcy velocity which influences. This is consistent with results obtained using the correlation of Dwivedi&Upadhyay. With the MTC, knowing the number of exchange site and the relative affinity, OPTIPUR can simulate the column outlet concentration versus time. Then, the duration of use of resins can be predicted in conditions of a binary exchange.Keywords: ion exchange resin, mass transfer coefficient, modeling, OPTIPUR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370