
 

 

  
Abstract—The present study focuses on methods allowing a 

convenient and quick calculation of the SIFs in order to predict the 
static adhesive strength of bonded joints. A new SIF calculation 
method is proposed, based on the stresses obtained from a FE model 
at a reference point located in the adhesive layer at equal distance of 
the free-edge and of the two interfaces. It is shown that, even limiting 
ourselves to the two main modes, i.e. the opening and the shearing 
modes, and using the values of the stresses resulting from a low 
detailed FE model, an efficient calculation of the peeling stress at 
adhesive-substrate corners can be obtained by this way. The 
proposed method is interesting in that it can be the basis of a 
prediction tool that will allow the designer to quickly evaluate the 
SIFs characterizing a particular application without developing a 
detailed analysis. 
 

Keywords—Adhesive layer, Bounded joints, Free-edge corner, 
Stress intensity factor.  

I. INTRODUCTION 
ANY modern engineering structures contain adhesively 
bonded joints because they offer certain advantages 

over mechanical connectors. It becomes important to 
investigate the mechanical response near the wedge corner 
under various loading conditions as there are a lot of 
applications where the risk of adhesive rupture cannot be 
eliminated. Adhesive failure occurs when the fracture initiates 
at one of the joint free-edge interface corners, and spreads 
along the interface. The designer who wishes to predict the 
static adhesive strength inherent to a new design can refer to 
the concept of stress intensity factor (SIF) in order to 
formulate a criterion.  

As it is well-known, a stress singularity develops at wedge 
corners [1]-[2]. The asymptotic free-edge stress fields near an 
interface corner may be obtained using the Airy’s stress 
function approach. It can be shown that the stresses subjected 
to a remote mechanical load, and having the local edge 
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geometry shown in Fig. 1, are of the form: 
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where (i,j) ≡ (r,θ) are plane polar coordinates centred at the 
interface corner; m is the material number (m = 1,2); λl are the 
eigenvalue of the problem (l = 1,n); fijl are non-dimensional 
constant functions of the material elastic properties, the 
eigenvalue λl, the local edge geometry characterized by angles 
θ1 and θ2, and of the polar coordinate θ; and Kl is the wedge 
corner stress intensity factor associated with the eigenvalue λl. 
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Fig. 1 General configuration at the interface corner between two 

dissimilar materials [3] 
 

The Kl are defined such that fijl = 1 along the interface 
(θ = 0). Then the peeling stress is obtained directly by: 
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The eigenvalue λl are the root of the following equation [4]: 
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Using stresses obtained from a low detailed FE 
model and located at a reference point to 

quickly calculate the free-edge stress intensity 
factors of bonded joints 
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where : 
 

 
 
 
 
 
 
 

 
α and β are Dundurs composite parameters [5] which are 

defined as : 
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where  21 / μμ=k  , ( )mmm E νμ += 12/ , mE  and mν  denote 
shear modulus, Young’s modulus and Poisson’s ratio for 
material m = (1,2), respectively, and Lm = 4(1-νm)  for plane 
strain. The value of λl can be real or complex in general. 

In this paper, as in most of the available studies, only the 
stress term associated with the smallest positive real 
eigenvalue λ 1 ( 10 1 << λ ) will be considered, the contribution 

from the higher order terms being neglected. The peeling 
stress at the interface takes the following simple form: 
 ( ) ( )00, <≈ δσ δ

θθ rKr  (1) 

where r is the distance from the corner, K the SIF and δ the 
order of the singularity ( 011 <−= λδ ).  

Being particular bi-material wedges, the different interface 
corners of any bonded joint can be analyzed using this 
approach. The adhesive layer must be considered as such in 
the model because the objective is to exhibit the stress fields 
that take place between this adhesive and the substrates in the 
region where the adhesive fracture initiates. Fig. 2 shows one 
of the possible geometrical configurations which characterize 
usually a single lap joint with square edges at the end of the 
layer. It makes appear four different corners, noted A, B, C 
and D. Some parameters describing the corners A and C in 
accordance with the previous method are given in the figure. 
Other configurations could have been considered as well, for 
example those related to double lap joint, single strap joint…, 
or with a spew fillet at the end of the adhesive layer. 

Each corner leads to particular values of δ and K as it refers 
to a specific couple of angles and materials. From the 
materials proposed in Table I, from the interface corner 
parameters specified in Tables II, the Table III gives the 
singularity orders which characterize the different corners of 
the configuration defined in Fig. 2. They vary from δA = – 
0.3386 to δC = – 0.2680. 

 
TABLE I 

PARAMETERS DEFINING THE MATERIALS 
 Adherend n°1 Adherend n°2 Adhesive layer 

Material Steel Aluminium Epoxy 
Young’s Modulus E1 = 207 GPa E2 = 69 GPa Ea = 3.5 GPa 
Poisson’s ratio ν1 = 0.3 ν2 = 0.33 νa = 0.35 

 

Adherend n°2 

Corner A 
Material 1A in region –θ1A ≤ θ ≤ 0 
Material 2A in region 0 ≤ θ ≤ θ2A  

with θ1A  = π /2  and  θ2A = π 

Corner C 
Material 1C in region –θ1C  ≤ θ ≤ 0 
Material 2C in region 0 ≤ θ ≤ θ2C 

with θ1C = π /2  and  θ2C = π /2  
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Fig. 2 A single lap joint configuration with square edges  

at the end of the layer 
 

TABLE II 
PARAMETERS DEFINING THE INTERFACE CORNERS 

 θ1 Material 1 θ2 Material 2 
Corner A π/2 Adhesive π Aluminium 
Corner B π / 2 Steel π / 2 Adhesive 
Corner C π / 2 Aluminium π / 2 Adhesive 
Corner D π / 2 Adhesive π Steel 

 
TABLE III 

SINGULARITY ORDERS 
 α β δ=λ1-1 

Corner A 0.9020 0.2070 -0.3386 
Corner B 0.9655 0.2218 -0.3016 
Corner C 0.9020 0.2070 -0.2680 
Corner D 0.9655 0.2218 -0.3272 
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Regarding the SIF K, the literature proposes the use of a 
critical value, noted Kcrit, as a fracture initiation criterion [6]-
[7]. The value of Kcrit, which characterizes the strength of the 
interface, must be evaluated from tests for the different 
configurations that may be encountered (material 
combinations, corner geometries, bonding processes). During 
a pre-sizing phase, when it is necessary to check the capability 
of a new application, the designer must calculate the value of 
K at the different singularities of the joint, and verify that 
these values remain below than the related Kcrit. The 
evaluation of the magnitude of K has led to recent interest for 
various joint geometries and loading [6]-[7]. The solution that 
is generally proposed in the literature to calculate the SIFs is 
based on the development of FE analyses using very fine 
mesh near the corner points. The Fig. 3 illustrates one of the 
first models that have been proposed by Reedy [8]-[10]. In 
this model, the configuration is idealized as the adherends are 
considered as rigid. Plane strain finite elements are used, and 
the applied shear loading is obtained by displacing the layer's 
lower edge relative to the fixed upper edge. Then, the SIF is 
determined from FE stresses at the interface by curve fitting 
using for example a least square algorithm. As illustrated in 
the Fig. 4, [11]-[12] shown that the extent of the region to be 
considered is about 25 10/10 −− << hr  where h is the adhesive 
layer thickness. The need in meshing refinement near the 
corner points is directly dependent on these values. 

 

 

 
 

Fig. 3 Typical finite element mesh used in FE analysis [8] 
 
Methods allowing a more direct and quick calculation of K 

are expected here. The approach of Wang & Rose [12] is one 
of the more interesting among those given in the literature. 
They have proposed the following general form, which 
considers the superposition of two principal loading modes, 
like in fracture mechanics: 

III KKK +=  
with : 

 ( )aI AhK νσ δ−∗=   and  ( )aII BhK ντ δ−∗=   (2) 
where:  

1) KI , KII  are the SIFs related to mode I (opening mode) and 
mode II (shearing mode) respectively,  

2) ∗σ  and ∗τ  are stresses representative of the corner 
external loading, 

3) h is the adhesive layer thickness and δ the singularity 
order. The factor h-δ, which is based on dimensional 
considerations, has been proposed first by Reedy [10], 

4) A and B are non-dimensional stress intensity functions. 
They are solely dependent on adhesive Poisson's ratio, 
because, for simplicity, they are determined once and for 
all using full finite-element computations in the 
hypothesis of rigid adherends. 

But someone who wants to practice this method is helpless 
when it seeks to implement it: the main difficulty is linked to 
the absence of a precise definition of the stresses that have to 
be extracted from models and used as reference. The use of 
σ Max and τ Max, the maximal peeling and shearing stresses in 
the adhesive layer in the vicinity of the corner, has been 
suggested [12]. But the evaluation of these maximal stresses is 
not so easy: their localization is unknown a priori, they are 
dependent on the mesh refinement when FE analyses are used, 
and they suffer of large approximations when they are 
calculated by an analytical method. 
 

 
Fig. 4 Distribution of stress near the wedge tip calculated using FE 

analysis, Wang & al. [12] 
 

II. DEFINING A NEW METHOD TO CALCULATE THE STRESS 
INTENSITY FACTOR 

This paper seeks to define a calculation method of the SIFs 
which would be:  

- Clearly defined: the user should be able to apply this 
method automatically and systematically, without worrying 
about the possible influence of arbitrary parameters  

- Universal: the method should handle the many cases that 
may arise in industrial applications. Also, analytical methods 
are to be avoided as they are able to describe the behaviour of 
joints only in particular cases. By cons, the use of the finite 
element method seems to be quite suitable, since it allows the 
calculation of many parameters whatever the geometric shape 
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of the adherends 
- Fast: the method must be based on data available at low 

cost. Having chosen to rely on the finite element method to 
assess certain parameters, it is preferable to avoid, during the 
daily use of the method, the need to develop specific and 
refined models, whose preparation would be time-consuming, 
and to use instead a meshing as simple as possible, and easy to 
be obtained. 

- Reliable: the method must be able to give an estimate of 
the SIFs with good accuracy. In preliminary design phase, a 
fast estimate that leads, at the most critical areas, to an error of 
less than 10% is often considered more interesting than a very 
expensive estimate, even if this last one provides more 
accurate results. 

 
A method that provides a satisfactory answer to all these 

objectives is proposed below. This method is based on the 
stresses obtained from a low detailed FE model. It requires 
only that the end of the bonded joint is meshed as shown in 
Fig. 5. Five plane strain quadratic elements (       to       ) have 
to be located at the interface extremity: 

- transversally, the adhesive layer is divided into two 
elements of equal thickness h/2, 

- longitudinally, the last column of elements at the end of 
the adhesive layer also has a width equal to h/2, 

- the two adherends are meshed so that square elements of 
height h/2 and width h/2 are located in continuity of those 
mentioned above. 

 
 

Adhesive layer 

h/2 

h/2 

h/2 

Adherend n°2 

Adherend n°1 

B 

A 

x 

y 

σR ,τR 

R 

1 

2 

3 

4 5

h/2 

h/2 

Fig. 5 Typical finite element mesh used in analyses Detail of the 
mesh at interface corner 

 
The point R located in the adhesive layer at equal distance 

of the free-edge and of the two interfaces is used as the 
reference point where to extract the peeling stress σR and the 
shearing stress τR that will be used in the calculation of the 
SIFs. The general expression of a stress intensity factor 
becomes: 

III KKK +=       
with : 
 δσ −= hCK RIRI ,

   and   δτ −= hCK RIIRII ,
 (3) 

where CR,I and CR,II are two parameters dependent on the 
couple of angles and materials which characterises the corner 
under study. In the configuration of the Fig. 5, the two corners 
A and B are studied from the same FE analyses, but each 

corner will lead to KI and KII specific values. 
The procedure allowing the identification of the parameters 

CR,I and CR,II which appear in (3) and which are related to the 
corner A is described below. The procedure is based on results 
derived from a pattern of study. The geometrical parameters 
of the pattern which has been chosen are presented in the Fig. 
6. The adhesive thickness h may be fixed arbitrary as it is 
directly taken into consideration in (3), then CR,I and CR,II do 
not depend on its value. The dimensional parameter e driving 
the whole geometry must be chosen large related to h. For 
instance, e = 100 h can be used.  

 

ΔX 

ΔY 

h 

e 

e 

2e 

e 
a. Mode I 

b. Mode II 

x 

y 

Area under 
study

 
Fig. 6 Geometric parameters and boundary conditions of the pattern 

of study 
 

The identification of CR,I and CR,II will be done in the three 
following phases: 

Phase 1. The geometry of the pattern is meshed using 
quadratic plane strain finite elements, the meshing being 
relatively sparse, but respecting the constraints proposed in 
Fig. 5: it must make appear the five square elements whose 
side dimensions are h/2. Two analyses are then realised: 

o one related to the mode I. The boundary conditions to 
be used are those given in Fig. 6a: the lower edge is 
fixed and the upper edge is displaced transversally by 
ΔY (the value is arbitrary). Then the stresses σR,I and τR,I 
are evaluated. 

o one related to the mode II.  As illustrated in Fig. 6b, the 
upper edge is now displaced longitudinally by ΔX. The 
stresses σR,II and τR,II are then calculated. 

Phase 2. The geometry of the pattern of study is now 
meshed using a highly refined meshing around the corners at 
the end of the adhesive layer. The Fig. 7 illustrates the kind of 
detailed FE model which can be used. At the corner, the 
smallest side element length is about 3.E-5mm. The same 
analyses than in phase 1 are then operated. The object of these 
two calculations is to determine the two peeling stress fields 
along the interface, ( )0,rref

Iθθσ  and ( )0,rref
IIθθσ . These fields will 

1 5
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be used as reference during the following phase.  
 

Corner A 

( )0,rref
θθσ

 
Fig. 7 Typical refined meshing 

 
Phase 3. The object of this phase is to determine once and 

for all the two parameters CR,I and CR,II which will allow the 
calculation of the SIF directly from a sparse FE model. (1) and 
(3) may be rewritten in: 

 ( ) ( )
( ) δδ

δδ
θθ

τσ

σ

rhCC

rKKrKr

RIIRRIR

III
−+=

+==

,,

0,  (4) 

Then, the identification of CR,I and CR,II can be done by 
minimizing the distance between the fields calculated using 
(4) and the reference fields, i.e.: 

o Mode I: the field calculated using (4) with σR,I , τR,I  and 
the reference field ( )0,rref

Iθθσ  

o Mode II: the field calculated using (4) with σR,II , τR,II 
and the reference field ( )0,rref

IIθθσ  

Table IV gives the values that could be obtained when 
considering the single lap configuration of Fig. 2 and the 
parameters proposed in Table II and Table III. 
 

TABLE IV 
CR,I   AND  CR,II   RELATED TO THE CONFIGURATION DEFINED IN FIG.2 

 δ = λ1 – 1 CR,I CR,II 
Corner A -0.3386 0.439 -0.830 
Corner B -0.3016 0.496 0.798 
Corner C -0.2680 0.499 0.730 
Corner D -0.3272 0.430 -0.936 
 

III. EVALUATING THE PROPOSED METHOD 
The accuracy of the method proposed in the previous 

section will now be evaluated. The influence of three main 
parameters will be analyzed: 

o the load direction, particularly the combination of the 
two principal modes, 

o the thickness of the adhesive layer, 
o the combination of adhesive and adherend materials.  

A. Mixed-mode loading 
The structure illustrated in Fig. 8 is used as support for this 

study. Its forms refer to those of an Arcan device, allowing the 
application of the load at various incidence angles. Five angles 
are considered: 

o load F1 : pure opening-mode loading (mode I), 
o loads F2, F3 and F4 : the incidence angles are 

respectively equal to π/8 , π/4 and 3π/8 (mixed-
modes), 

o load F5 : pure shearing-mode loading (mode II). 
 

 
 Numerical data : 

F1 = F2 = F3 = F4  
    = F5 = 65 N/mm
h = 0.2 mm 
t = 50 mm 
a = 5 t 

- F1 

ab )12( −=  

F2 F3 

F4 

F5 

F1 

- F2 
- F3

- F4

- F5

a 
b 

t b 

a 

Adherend n°1
Steel 

Adherend n°2
Aluminium 

H 

G 

 
 

h/2 

h 

G 

a 

F5 

   

 

a 

h 

H 

Adhesive 
layer 

h/2 

 
Fig. 8 Geometry and loadings of an Arcan shaped structure 

 
The Fig. 8 makes appear the geometrical partitions that 

have been made in order to obtain the appropriate loading 
angles ( )12( −= ab  leads to the orientations required by F2 
and F4). The shape of the adhesive layer is the same than in 
Fig. 1: single lap configuration with square edges at the two 
ends. Materials are those defined in Table I. 

In a first time, the method described in Section II is 
implemented. The structure is meshed using plane strain 
quadratic elements. The meshing is relatively sparse: the 
model counts 5265 nodes and 1680 elements considering the 
whole structure. It satisfies the constraint related to the 
presence of five elements at each end of the adhesive layer 
(Fig. 5). Then a FE analysis is done for each different loading. 
The SIFs, noted Kmethod, can be calculated for each corner 
using (3) with: 

o the stresses σR  and τR  obtained  from the FE analyses, 
o CR,I and CR,II obtained in the previous section. 

In a second time, the structure is analyzed using a highly 
refined mesh in the region of the interface corners (87661 
nodes and 28900 elements to model the whole structure). 
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From the peeling stress distribution obtained at the interface, a 
SIF reference value, noted Kref, is calculated by optimization 
at each corner. 

The performance of the proposed method can be evaluated 
by comparing Kmethod to Kref. Table V gives Kmethod and the gap 
relative to the reference: 

ref

refmethod100Gap/ref
K

KK −
=  

 
TABLE V  

 VALUE OF THE SIFS (MPA/MM^δ) AND THE GAPS/REFERENCE (%)  
FOR DIFFERENT LOADINGS 

Corner A Corner B  
Kmethod Gap/ref  Kmethod Gap/ref  

Load F1 1105 0.19 1452 0.59 
Load F2 2525 0.25 612 1.75 
Load F3 3552 0.63 -345 2.88 
Load F4 4032 1.63 -1255 0.72 
Load F5 3889 1.40 -1984 0.54 

     
Corner C Corner D  

Kmethod Gap/ref  Kmethod Gap/ref  
Load F1 1005 0.13 1357 0.06 
Load F2 877 0.33 2303 0.26 
Load F3 603 0.87 2888 0.64 
Load F4 233 4.37 3029 1.08 
Load F5 -179 9.15 2704 1.55 

 
Table V allows identifying the highest values of the SIFs. K 

is maximal at corner B for load F1, then at corner A for the 
other loads. The load intensity remaining constant 
(F = 65N/mm), the peeling stress related to the mode II is 
more important than the one due to the mode I. The gaps are 
small wherever the values of K are positive and significant 
(less than 2%). This shows the interest of the proposed 
method.  

Gaps become more important at the corner C when the 
weight of the mode II increases. But it can be noticed that the 
value of K is close to zero, and then it is quite normal that the 
gap increases. Moreover, when K is negative, the peeling 
stress ( )0,rθθσ  at the interface is compressive, and the 
probability to generate an adhesive failure is very low. 

B. Thickness of the adhesive layer 
Using the same structure than in section III.A, and 

considering only the pure shearing-mode (mode II), which is 
the most disadvantageous relative to the performance of the 
method, the adhesive layer thickness h is now considered as a 
variable. Table VI gives the SIFs obtained by the proposed 
method (Kmethod) and the gaps relative to the reference for four 
different thicknesses: 0.2, 0.3, 0.4 and 0.5 mm. 

 As shown in Table VI, the proposed method leads to 
accurate results at the corners submitted to important peeling 
stresses (corners A and D). The differences increase with the 
thickness of the adhesive layer, but still within acceptable 
limits. These results seem logical since the reference point 
moves away from the corner area when the joint thickness 
increases. 

C. Combination of materials 
Another set of materials is considered below. The structure 

remains the same than in section III.A, the loading being kept 
the most critical ones (mode II). 

The adherend n°1 is chosen more rigid than the steel 
(Silicon Carbide, noted SiC; E1 = 441 GPa), and the adhesive 
more compliant (Ea = 1.9 GPa instead of 3.5 GPa). Data 
related to the new set of materials are given in Table VII. The 
adherend n°2 remains unchanged (aluminium). 

As shown in Table VIII, the SIF of the corner A will lead to 
highest peeling stress. The precision of the proposed method 
seems to be satisfactory (0.78% where the attention must be 
focused). 

It can be noticed that the value of K at the corner A is 
largely lower with this set of materials than the one obtained 
in section III.A: 2421 MPa/mm^(-0.3905) instead of 
3889 MPa/mm^(-0.3386). The adhesive stiffness decrease (Ea 
has been divided by 1.8) seems to be highly most influent on 
the value of K than the adherend stiffness increase (E1 has 
been multiplied by 2.1). But it would be necessary to 
introduce the two associated values of Kcrit in the reasoning to 
be able to conclude on the relative strength of the two types of 
adhesive joint. 
 

TABLE VI   
VALUE OF THE SIFS (MPA/MM^ δ) AND THE GAPS/REFERENCE (%)  

FOR DIFFERENT THICKNESSES 
Corner A Corner B Thickness 

(mm) Kmethod Gap/ref  Kmethod Gap/ref  
0.2 3889 1.40 -1984 0.54 
0.3  3883 3.02 -2141 0.87 
0.4 3913 4.23 -2291 0.93 
0.5 3960 5.23 -2431 0.76 

     
Corner C Corner D Thickness 

(mm) Kmethod Gap/ref  Kmethod Gap/ref  
0.2 -179 9.15 2704 1.55 
0.3 -418 15.46 2878 4.56 
0.4 -640 17.43 3035 6.78 
0.5 -843 17.26 3178 8.53 

 
TABLE VII   

PARAMETERS DEFINING THE NEW SET OF MATERIALS 
 Adherend n°1 Adherend n°2 Adhesive layer 

Material Silicon Carbide  Aluminium Other adhesive 
Young’s Modulus E1 = 441 GPa E2 = 69 GPa Ea = 1.9GPa 
Poisson’s ratio ν1 = 0.16 ν2 = 0.33 νa = 0.46 

 
TABLE VIII   

VALUE OF THE SIFS (MPA/MM^ δ) AND THE GAPS/REFERENCE (%)  
FOR ANOTHER COMBINATION OF MATERIALS 
Corner A Corner B 

Kmethod Gap/ref  Kmethod Gap/ref  
2421 0.78 -1433 1.83 

    
Corner C Corner D 

Kmethod Gap/ref  Kmethod Gap/ref  
-227 4.43 1726 0.39 

IV. APPLICATION 
As example, the analysis of a conventional single lap joint 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:3, No:10, 2009 

1170International Scholarly and Scientific Research & Innovation 3(10) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
10

, 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
12

6.
pd

f



 

 

is proposed, the two adherends being now two plates whose 
thicknesses are relatively thick compared to those used above. 
Fig. 9 gives the different dimensions of the assembly under 
study. Materials are those introduced in Table I (steel, 
aluminum and epoxy). The two plates experience a traction 
load. It is well known that, in this configuration, the flexion of 
the plates induces, at the extremity of the bonded joint, twice 
shearing and peeling effects. The structure has been meshed 
first using the prescriptions of the proposed method, and then 
using a highly refined meshing in order to evaluate the 
accuracy of the results. 

 
 

h = 0.2 mm 
F = 65N/mm

L =15 mm C = 45 mm 

e2 = 3 mm 

e1 = 1.5 mm 

C = 45 mm 

h = 0.2 mm 

Steel 

Aluminium 

 
Fig. 9 Geometric profile of the assembly 

 
Table IX shows values of the SIFs obtained by the 

proposed method, and also provides the differences observed 
in relation to reference calculations. The accuracy is good at 
the two corners D and A where the peeling stresses are 
highest.  

 
TABLE IX   

VALUE OF THE SIFS (MPA/MM^ δ) AND THE GAPS/REFERENCE (%)  
Corner A Corner B 

Kmethod Gap/ref  Kmethod Gap/ref  
10320 1.52 -3183 1.89 

    
Corner C Corner D 

Kmethod Gap/ref  Kmethod Gap/ref  
2135 26.5 15830 1.50 

V. CONCLUSION 
The Stress Intensity Factor K is one of the parameters 

commonly used to express the static adhesive strength 
criterions of bonded joints. But, to determine the value of K 
that characterizes a new application, it is necessary, if a direct 
approach is not available, to develop a very refined FE 
modeling around the singularities where stress concentrations 
happen. 

The method defined in this paper aims to avoid the designer 
has to spend time in cumbersome modeling work, especially 
during preliminary design phases. The following expression is 
proposed to obtain a more direct estimate of the SIF: 

( ) δτσ −+= hCCK RIIRRIR ,,
 

It refers to the two conventional fracture modes: the 
opening-mode (mode I) and the shearing-mode (mode II). It 
requires identifying first, once and for all, for each corner, the 
two constant parameters CR,I and CR,II characterizing the 
influence of each mode. A well-definite calculation process is 
given to lead to the determination of these parameters. Then, 
during the daily use of the method, the designer is asked to 
implement a low detailed FE model of the structure under 

study, but following precise prescribed meshing rules at the 
extremity of the bounded joint, and to extract from this model 
the two stresses σR  and τR  present at the point R located in the 
adhesive layer at equal distance of the free-edge and of the 
two interfaces. 

An evaluation of the method accuracy is proposed by 
measuring the gaps between its results and reference values 
obtained from highly refined analyses. A structure which 
looks like an Arcan device is considered in order to make vary 
the direction of the loading, and then the relative weight of the 
modes. The same structure allows evaluating also the 
influence of the thickness of the adhesive layer, and the 
combination of the materials. It is shown that the gaps remain 
low at the corners where the values of K are significant. 
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