Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31743
Design of a Dual Polarized Resonator Antenna for Mobile Communication System

Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan

Abstract:

This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.

Keywords: Metamaterial, electromagnetic band gap, dual polarization, resonator antenna.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093456

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299

References:


[1] Y. Liu, A.-T. Bu, E. S. Li, D. M Fu, L. Y. Xiao, "A new dual polarization dipole antenna.” International Conference on Microwave and Millimeter Wave Technology, pp. 5-7. 2004
[2] K. M. Mak, H. Wong, K. M. Luk, "A shorted bowtie patch antenna with a cross dipole for dual polarization.” IEEE Antennas and Wireless Propag. Lett. 6, pp. 126 – 129. 2007.
[3] A. Abas, A. Asrokin, R. H. Basri, N. Jamlus, "Dual-polarized dipole array antenna for CDMA 450 base station application.” IEEE Asia- Pacific Conference on Applied Electromagnetics (APACE), pp. 1-4. 2010.
[4] Y. Liu, H. Yi, H. Liu, S. Gong, "A novel dual-polarized dipole antenna with compact size for wireless communication.” Progress In Electromagnetics Research C, 40, pp. 217-227. 2013.
[5] L. Han, R. Ma, X. Chen, W. Zhang, "Compact dual-band dipole antenna fed by a coplanar waveguide.” International Conference on Microwave and Millimeter Wave Technology (ICMMT) pp. 1-3. 2012.
[6] M.Z. Azad, M. Ali, "Novel Widebawd directional dipole antenna on a mushroom like EBG structure.” IEEE Trans. on Antennas and Propag. Vol. 5(56), pp. 1242 – 1250. 2008.
[7] Z. Zhang, M.F. Iskander, J.C. Langer, J. Mathews, "Wideband dipole antenna for WLAN.” IEEE Antennas and Propagation Society International Symposium, pp. 1963-1966. 2004.
[8] A. Thumvichit, T. Takano, "Ultra low profile dipole antenna with a simplified feeding structure and a parasitic element.” IEICE Trans. Communications, E89-B(2), pp. 576-580. 2006.
[9] L.Zhan, Y.Rahmat-Samii, "PBG, PMC and PEC ground plane: A case study of dipole antenna.” IEICE Trans. Communications, pp. 674–677. 2000.
[10] N. Fhafhiem, P. Krachodnok, R. Wongsan, "A shorted-end curved strip dipole on dielectric and conducting plane for wireless LANs,” International Symposium on Antenna and Propagation (ISAP) pp. 835- 838. 2009.
[11] N. Fhafhiem, P. Krachodnok, R. Wongsan, "Curved strip dipole antenna on EBG reflector plane for RFID applications,” WSEAS Transection on Communications, 6(9), pp. 374-383. 2010.
[12] F.Yang, Y.Rahmat-Samii, "Electromagnetic band gap structures in antenna engneering.” USA by Cambridge University Press, New York 2009.
[13] M. Grelier, C. Djoma, M. Jousset, S. Mallegpl, A. C. Lepage, X. Begaud, "Axial ratio improvement of an archimedean spiral antenna over a radial AMC reflector.” Appl. Phys. A 109(3), pp. 1081-1086. 2012.
[14] S. Chaimool, C. Rakluea, P. Akkaraekthalin, "Mu-near-zero metasurface for microstrip-fed slot antennas.” Appl. Phys. A 112(3), pp. 669-675 2013.
[15] E. Rodes, M. Diblanc, E. Arnaud, T. Monediere, B. Jecko, "Dual-band EBG resonator antenna using a single-layer FSS.” IEEE Antennas and Wireless Propag. Lett. 6, pp. 368–371. 2007.
[16] M. Hajj, R. Chantalat, B. Jecko, "Design of a dual-band sectoral antenna for Hiperlan2 application using double layers of metallic electromagnetic band gap (M-EBG) materials as a superstrate.” International Journal of Antennas and Propag., pp. 1 – 5 2009.
[17] G. V. Trentini, "Partially reflecting sheet array.” IRE Trans. on Antennas and Propag. 4(4), pp. 666 – 671. 1956.
[18] N. Fhafhiem, P. Krachodnok, R. Wongsan, "Gain improvement of curved strip dipole using EBG resonator.” Progress In electromagnetics research symposium proceedings (PIERS) pp. 1631 – 1634. 2012.
[19] L. Peng, C. L. Ruan, L. Z. Qiang, "A novel compact and polarizationdependent mushroom-type EBG using CSRR for dual/triple-band applications.” IEEE Microwave and Wireless Components Letters. 20(9), pp. 489 – 491. 2010.
[20] Q. Wu, C.P. Scarborough, B.G. Martin, R.K. Shaw, D.H. Werner, E. Lier, X. Wang, "A ku-band dual polarization hybrid-mode horn antenna enabled by printed-circuit-board metasurfaces.” IEEE Trans. on Antennas and Propag. 61(3), pp. 1089 – 1098. 2013.