
Improving Fault Resilience and Reconstruction of
Overlay Multicast Tree Using Leaving Time of

Participants
Bhed Bahadur Bista, Member, IEEE,

Abstract—Network layer multicast, i.e. IP multicast, even after
many years of research, development and standardization, is not
deployed in large scale due to both technical (e.g. upgrading of
routers) and political (e.g. policy making and negotiation) issues.
Researchers looked for alternatives and proposed application/overlay
multicast where multicast functions are handled by end hosts, not
network layer routers. Member hosts wishing to receive multicast
data form a multicast delivery tree. The intermediate hosts in the tree
act as routers also, i.e. they forward data to the lower hosts in the
tree. Unlike IP multicast, where a router cannot leave the tree until all
members below it leave, in overlay multicast any member can leave
the tree at any time thus disjoining the tree and disrupting the data
dissemination. All the disrupted hosts have to rejoin the tree. This
characteristic of the overlay multicast causes multicast tree unstable,
data loss and rejoin overhead. In this paper, we propose that each node
sets its leaving time from the tree and sends join request to a number
of nodes in the tree. The nodes in the tree will reject the request if
their leaving time is earlier than the requesting node otherwise they
will accept the request. The node can join at one of the accepting
nodes. This makes the tree more stable as the nodes will join the tree
according to their leaving time, earliest leaving time node being at the
leaf of the tree. Some intermediate nodes may not follow their leaving
time and leave earlier than their leaving time thus disrupting the tree.
For this, we propose a proactive recovery mechanism so that disrupted
nodes can rejoin the tree at predetermined nodes immediately. We
have shown by simulation that there is less overhead when joining
the multicast tree and the recovery time of the disrupted nodes is
much less than the previous works. Keywords

I. INTRODUCTION

Overlay, sometimes referred as application layer, multicast
[1], [2], [3] can be deployed quickly over a large network for
data dissemination. The network layer multicast (IP Multicast)
[4] , [5] is not deployed in large scale due to various issues
such as delay in standardization, implementation of protocols
and upgrading of routers which are in various locations around
the world [6]. In contrast in overlay multicast, end hosts
handle the multicast functionality by themselves and commu-
nicate with each other using underling unicast. This usually
requires more overall bandwidth and is slower compared
to IP multicast because duplicate packets travel the same
physical links multiple times. But it is inexpensive and easily
deployable for point-to-multipoint communication. Although,
overlay multicast brings flexibility in its use and deployment,
it suffers from problem of service reliability because a member
may leave multicast delivery tree abruptly causing data outages
on all the downstream members.

B. B. Bista is with the Faculty of Software and Information Science, Iwate
Prefectural University, Japan 020-0193, e-mail: bbb@soft.iwate-pu.ac.jp.

Various resilient overlay multicast protocols are broadly
proposed for mesh-like topology and single tree-like topology.
A good comparison of the resilient protocols for mesh-like
topology can be found in [7]. The basic approach is to con-
struct redundant multiple-tree or have several extra redundant
cross links in an original single tree so that there is more
than one path for data delivery to end hosts. In this paper, we
are interested in tree-like topology for constructing resilient
overlay multicast tree.

There are three main techniques in delivering data with
minimum loss to all members in overlay multicast where a
single tree for data delivery is constructed.

The first one is to construct a stable tree so that the impact of
a node’s departure from the tree is minimized. There are some
researches in building a stable tree. In shortest tree, sometimes
called fat tree, construction methods [8], [9], [10], [11] nodes
with higher outgoing bandwidth, in other words, nodes which
can add many children, are put or shifted higher up the tree,
thus growing the tree side ways. So when a node leaves the
tree, only a few nodes will be affected.

The second is the longest stayed, sometimes called heavy-
tailed tree construction methods [12], [13] where nodes are
rearranged so that the nodes which have stayed longer in the
tree are moved up the tree expecting that they will stay longer
in the network.

The third method is not for building a resilient tree but
for recovery or reconstruction method of a tree when a node
leaves the delivery tree. This method tries to minimize the
time for affected nodes to rejoin the tree so that the data
outage is minimized. There are two approaches; reactive [14]
and proactive [15]. In reactive approach restoration of the
tree starts after a node departs the tree whereas in proactive
approach the restoration is planned beforehand so when a node
departs the tree the affected nodes rejoin the tree without delay.

In this paper, we propose a method to build a tree which is
fat, leaving time ordered and also offers a proactive approach
to reconstruct the tree. In our approach, nodes are joined
according to their leaving time from the network. A node
continues to connect nodes as its children as long as it has
available out-degree which will be explained in the next
section. In other words, we also make subtree grow side ways,
i.e. fat. Moreover, as soon as a node joins the network, it
calculates at which node it will rejoin the tree if its parent
node leaves the network.

The paper is organized as follows. In Section 2, we present
the detail of our multicast delivery tree construction methods.

Keywords—Network layer multicast, Fault Resilience, IP multicast

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1861International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

In Section 3, we present our proactive reconstruction method
for multicast delivery tree when a node leaves the tree. In
Section 4, we evaluate our proposals followed by the related
works in Section 5. Finally we conclude the paper in Section
6.

II. NETWORK LEAVING TIME ORDER MULTICAST TREE

In this section, we explain the leaving time and out-degree
of a node.

A. Leaving Time of a Node

We propose that each node when sending join request to
nodes which are already in the network also sends how long
it intends to stay, i.e. its leaving time from the network. Using
this parameter, we build a multicast tree so that nodes whose
leaving time is later (i.e. staying longer) will be put higher up
the tree. For example, when nodes 1 and 2 set their leaving
time 13:05 and 13:10 respectively, they are planning to leave
the network at 13:05 and 13:10 respectively. Here node 2 is
planning to leave the network later than node 1 and will be
put higher up in the multicast tree than node 1.

In order to have a single clock for setting leaving time, a
node will set its leaving time in GMT. Here an approximation
of leaving time is enough and clock synchronization is not
required.

In order to prevent a node from putting a large leaving time
and placing itself higher up the tree, we set an upper limit
for leaving time. A node is not allowed to set a leaving time
above the upper limit when it joins the network for the first
time. Ye Tian et al. [16] have found by probing PPLive [17],
a popular IPTV system based on overlay network, that nodes
stayed in the streaming application for 40 minutes in average.
Therefore, we put a threshold value of 40 minutes, in other
words, a node sets its leaving time such that its staying time
in the network will not exceed 40 minutes. However, a node
wishing to stay longer after its leaving time approaches can
extend it and continue to stay in the network which will be
explained later.

B. Out-degree of a node

We also consider the out-degree constrain of a node. Total
out-degree of a node depends upon the media streaming. If me-
dia play back rate is Mrate and bandwidth of a node is NBW ,
then the total out-degree of the node will be �NBW /Mrate�.
How many children a node can add depends upon its total
out-degree. If the out-degree of a node is zero it cannot add a
child. In this paper, we assume that each node has total out-
degree greater than or equal to 2. Though this is not a problem
in broadband Internet environment, we make this assumption
for proactively calculating at which node the children nodes
will rejoin after their parent leaves the multicast tree. We will
explain the details in Section 3.

C. Tree Construction

A multicast tree is constructed according to how join
requests are handled. We propose multiple join requests and
a single join request of a node to construct the tree.

1) Multiple Join Requests (MJR): If a node cannot join the
multicast tree in its first join request, it sends the join request
again to different nodes with the same leaving time or changes
its leaving time and sends the join request to the same nodes
again or both. The detail procedure is as shown below.

1) A node which wants to join the multicast tree sets its
leaving time and sends requests to a number of nodes
which are already on the tree.

2) When a node (which is already on the tree) receives the
request, it checks its available out-degree and compares
its leaving time with the leaving time of the requesting
node. If the leaving time of the requesting node is earlier
than its own leaving time and it has available out-degree
which is greater than or equal to 2 it sends can join
reply to the requesting node. Otherwise, it rejects the
join request.

3) When the requesting node receives replies from re-
quested nodes, it checks if there are any nodes which
can joint/connect it as their child. If there is more than
one node, it selects one which is nearest to it and sends
join request and the node will be joined to the multicast
tree at the requested node.

4) The parent node will then update its family list and
forward it to its children which will update their family
lists and forward to their children and so on.

5) If there are no nodes which can join it, the requesting
node will do one of the followings: (i) select the same
nodes and send join request with reduced leaving time,
(ii) select different nodes and send join request with the
same leaving time or reduced leaving time.

For example, if a node sets its leaving time 15:20 and sends
join request to nodes 4, 7 and 8 in Figure 1(a), its request will
be rejected as their leaving time is earlier than its own leaving
time. Now if it sends join request again without lowering its
leaving time, i.e. with the same leaving time, to other nodes
e.g. nodes 2, 5 and 6 it will receive can join reply from nodes
2 and 5 because their leaving time is later than its own leaving
time and they have available out-degree of 2. Finally the node
can select either node 2 or 5 for its parent node, i.e. to be
joined at.

415:15

7 8
15:02 14:10

1

2

5

16:20

16:10

16:05 15:15

6

9 10

∞

15:00

available out−degree

x

(b)

15:20

1

2 4

5

16:20

16:10

16:05 15:15

15:15

6 7 8

9 10

∞

15:00 15:02 14:10

(a)
available out−degree

Fig. 1. Leaving time order tree

2) Single Join Request (SJR): A node sends join request
only once and the request is forwarded up or down the tree
to other nodes if the requested node cannot add it as its child

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1862International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

or replace one of its children because of leaving time or out-
degree constrains. The detail procedure is as shown below.

1) As in method one, a node which wants to join the
multicast tree sets its leaving time and chooses one of
the nodes in the multicast tree and sends join request.

2) When a node in the tree receives the request, it checks
the requesting node’s leaving time. If it is earlier than
its own leaving time and has available out-degree 2 or
more, then it connects the requesting node as its child
and sends join success to the requesting node.

3) If the leaving time is earlier than its own leaving time but
does not have available out-degree to connect the node
as its child, it checks the leaving time of its children.
If there is a child whose leaving time is earlier than
the leaving time of the requesting node, it will replace
the child, i.e. the child will become the child of the
requesting node and the requesting node will be the
child of the requested node (i.e. the node which received
the request for the first time). If there is more than one
child whose leaving time is earlier than the requesting
node then the child with the earliest leaving time will be
replaced. If the leaving time of the requesting node is
earlier than all the children’s leaving time, the node will
forward the join request to the child with the earliest
leaving time. The child which receives the forwarded
request will perform the same procedure.

4) If the requesting node’s leaving time is later than the
requested node’s leaving time the requested node will
forward the request to its parent node. The parent node
will repeat the procedure in step 3, if its leaving time is
later than the requesting node. If not it will forward the
request to its parent.

5) Once the node is connected to the tree, its parent node
will update its family list and forward it to its children
which will update their family lists and forward to their
children and so on.

Eventually the node will be connected to the tree. The node
which connects the new node as its child will send the join
success to the requesting node. For example in Figure 1(a),
if a node x sets its leaving time 15:20 and sends join request
to node 7, it will forward the request to its parent node, node
4, which will forward the request to its parent node, node 1,
because the node x’s leaving time is later than their leaving
time. Finally the node 1 will replace node 4 by node x as
shown in Figure 1(b), i.e. node x will become a child of node
1 and node 4 will become the child of node x.

The disadvantage of this method is that there may be join
overhead as the joining procedure is handled by the nodes
which are already on the tree.

D. Leaving Time Update

When a node’s announced leaving time arrives and the node
intends to stay longer, it will increment its leaving time by the
difference of its initial leaving time and the time it joined the
tree. For example, if its initial leaving time was 9:10 and it
joined the multicast tree at 9:00 and if it does not leave the
tree at 9:10, it will increment its leaving time by 10 minutes

to 9:20. If it does not leave the tree at its following leaving
times it will increment its leaving time by 10 + 2× n where
n is the number of its previous leaving time it did not leave
the tree. This is to prevent a node from climbing up the tree
faster.

When the node increments its leaving time its leaving time
may be later than its parent’s leaving time. The node waits
until its parent’s leaving time arrives and checks whether the
parent leaves the tree at its leaving time. If it does, the rejoin
procedure of children will start. If it doesn’t the parent will
also increment its leaving time which will be later than its
children nodes’ leaving time. The tree will remain as it is.

III. PROACTIVE APPROACH FOR TREE RECOVERY

In this section, we will explain a family list in which there
are lists of nodes obtained from the parent node when a
node joins/rejoins the multicast tree. Our proposed proactive
approach for tree recovery uses the family list to find which
node a node will rejoin at, when its parent leaves the network.

A. Family List

Each node maintains a children list, a brothers list, a
parent, a parent’s brothers list, a grandparents (includes grand..
grandparents) list and a grandparents’ brothers list, referred as
a family list in this paper. Each list contains a list of nodes.
If a node’s out-degree is zero it is removed from the list.

For example, the family list of node 9 in Figure 2 is as
follows:

ChildrenList9 = [17, 18]
BrotherList9 = [10]
Parent9 = [4]
ParentBrotherList9 = [5, 6]
GrandparentList9 = [2, 1]
GrandparentBrotherList9 = [3]

When a node connects/reconnects a node as a child, it
forwards its family list to the newly connected child. The
child then transforms its parent’s family list to its own family
list. For example when node 9 connects node 19 as its child,
it sends its family list to node 19 which uses it to make its
own family list as shown below.

ChildrenList19 = []
BrotherList19 = ChildrenList9 = [17, 18]
Parent19 = [9]
ParentBrotherList19 = BrotherList9 = [10]
GrandparentList19
= GrandparentList9 + Parent9
= [2, 1] + [4] = [2, 1, 4]
GrandparentBrotherList19
= GrandparentBrotherList9
+ ParentBrotherList9
= [3] + [5, 6] = [3, 5, 6]

Node 9 forwards the new child (node 19) information to its
other children, nodes 17 and 18, which update their brother

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1863International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

lists as shown below. Other lists are unchanged.

BrotherList17 = [18, 19]
BrotherList18 = [17, 19]

If nodes 17 and 18 have children they will forward the
information about node 19 to their children which will forward
to their children and so on all the way to leaf nodes and they
will update their family lists.

Similarly, if a node leaves the tree, its parent will forward
the information of the node that left the tree to its remaining
children which will forward to their children and so on all the
way to leaf nodes and they will update their family lists.

B. Family List Update

If a node commits certain bandwidth for multicast, the total
out-degree of the node will remain the same. However, in real-
ity the available bandwidth of a node dynamically changes as
other network applications hold and release bandwidth. When
a node’s bandwidth changes, its out-degree also changes. If its
available out-degree becomes to zero, it informs to its children
and parent to remove it from the family list, because it cannot
connect a node as its child. Its parent node and children nodes
remove it from the family list and inform their children to do
the same. All the nodes below its parents node will remove it
from the family list. If a node’s available out-degree changes
from zero to one or more, it informs its children and parent
about it which will then add it in their list and inform their
children.

C. Rejoin Protocol

When a node leaves the tree its children need to rejoin
the tree. We assume only the children, i.e. the root nodes
of the disconnected subtrees, rejoin the tree. Other nodes of
the disconnected subtree do not need to rejoin the multicast
tree. We distinguish between a node’s joining the multicast
tree for the first time and its rejoining the tree after it is
disconnected from it. In rejoining the tree a node does not
change its leaving time. Similarly, a node treats a joining and
a rejoining request of a node separately. When a node receives
a rejoin request from a node and condition for leaving time is
satisfied (i.e. rejoining node’s leaving time is earlier than its
own leaving time), it will add the node as a child until its out-
degree becomes zero. Note that it will leave one out-degree
available if the there is a join (not rejoin) request (see section
2.3).

As we have already said in section 2.3, each node leaves
a out-degree available for rejoining nodes. A node knows
leaving time and available out-degree of its children, broth-
ers, parent, parent’s brothers, grandparents’ and grandparents’
brothers. Since each node knows the above information, it
can immediately rejoin at one of the above nodes if its parent
leaves the tree. The procedure of which node a node will rejoin
at is as shown below.

1) The child with the highest leaving time will take the
place of its parent that has left the tree, i.e. rejoin at its
grandparent. Since they know about their brothers, they

2

4 5 6

9 10 11 12

17 18 19 joining node

7

3

8

13 14 15 16

1

Fig. 2. Joining to tree

will know which one will take the place of their parent.
If the grandparent has more out-degree available other
highest leaving time node will rejoin at the grandparent.

2) If the grandparent does not have any out-degree avail-
able, other children will rejoin at the brothers which
have rejoined at the grandparent. If those brothers cannot
rejoin any more brothers (nodes) because of unavailabil-
ity of out-degree, remaining brothers will rejoin at the
brother with the next highest leaving time and so on.

3) If a node cannot rejoin at its brothers it will rejoin at
its parent’s brother node. If that is not possible it will
rejoin at its grand grandparent. The order of rejoining at
nodes is grandparent, brothers, parent’s brother, grand
grandparent, grand grandparent’s brother, grand grand
grandparent, grand grand grandparent’s brother and so
on.

For example in Figure 3(a) if node 4 leaves the tree, node 7
(highest leaving time) will take its parent position, i.e. rejoin at
node 2. Node 8 will rejoin at node 7, its highest leaving time
brother. Node 9 will rejoin at node 5 which is parent’s brother
because node 7 and 8 (brothers) do not have any out-degree
available to add a child.

The above procedure to rejoin the tree is predetermined
(proactively calculated) from the family lists so the rejoining is
performed as soon as a node finds that it is disconnected from
the tree. The above order is arranged such that lower leaving
time node will not be higher up the tree when they rejoin it.
This maintains our original proposal of making a stable tree
from the beginning based on the leaving time.

15:50
15:40

15:45

15:30
15:25

15:15

15:00 14:50
14:40

16:00
16:10

∞ 1

2 3

4 65

7 8 9

10 11 12 13

15:50
15:40

15:30
15:15

15:00 14:50
14:40

16:00
16:10

∞ 1

2 3

65

7 8 9

10 11 12 13

15:10 15:10

15:25

(a) (b)

Fig. 3. Example of rejoining to tree

IV. EVALUATION

We evaluate our proposal by simulation. A event-driven
simulator was developed to study our proposal. We randomly

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1864International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

assign out-degree which ranges from 2 to 10 to each node.
This means that for 500Kbps playback rate of media, outgoing
bandwidth of nodes ranges from 1Mbps to 5Mbps. We as-
signed leaving time which ranges from 1 minute to 40 minutes
to each node randomly. Nodes are joining the overlay multicast
tree following the Poisson process.

The purpose of our simulation is to find the overhead
of the proposed overlay multicast tree construction methods,
maximum multicast tree depth and the time taken for a node
to rejoin the multicast tree once its parent leaves the tree.

A. Multicast Tree Construction Overhead

In our proposed methods once nodes join the multicast tree,
they are not rearranged again. However, while joining the
multicast tree their join request may be forwarded number
of times before they can successfully join the tree (single
join request) or they may resend join request a number of
times before they can successfully join the tree (multiple join
request).

 1

 1.5

 2

 2.5

 3

 300 600 900 1200 1500 1800 2100

N
o.

 o
f j

oi
n

at
te

m
pt

s

No. of nodes

Multiple Join Request

Fig. 4. Multiple join request overhead

 1

 2

 3

 4

 5

 6

 7

 300 600 900 1200 1500 1800 2100

N
o.

 o
f t

im
es

 jo
in

 r
eq

ue
st

 fo
rw

ar
de

d

No. of nodes

Single Join Request

Fig. 5. Single join request overhead

As shown in Figure 4, In our simulation, we found that if a
node cannot join the multicast tree in its first attempt it can join
the tree in its second attempt in average. The number of join
attempts does not change even if the number of participating
nodes increases.

In single join request, if a node cannot join the tree at the
requested node, we check the number of times its request were
forwarded up or down the tree before it can join the tree
successfully. We count as one forward if the node’s request
is forwarded one level to next level in the tree. As shown in
Figure 5, the average number of request forwarded increases
as the number of participating nodes increases. This may be
because if a requested node is around the bottom/top of the
tree and the new joining node’s request has to be forwarded
top/bottom of the tree due to its leaving time, then there will
be more number of request forwarding.

B. Tree Depth

We measured the maximum and average depth of the
multicast trees that are constructed using our proposed tree
construction methods. Our measurement does not say that all
leaf nodes are at the maximum depth but says at least one node
is. As shown in Figure 6, the single join request has higher
value than the multiple join request. This may be because in
the single join request, a new joining node in some cases shifts
a node which is already on the tree downward, i.e. becomes the
parent of node which is already on the tree. This increases the
depth of a tree, whereas in the multiple join request, this does
not occur. However, the average depth of the both methods is
almost the same.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 300 600 900 1200 1500 1800 2100

M
ax

im
um

 T
re

e
D

ep
th

No. of nodes

Multiple Join Request
Single Join Request

Fig. 6. Maximum tree depth

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 300 600 900 1200 1500 1800 2100

A
ve

ra
ge

 T
re

e
D

ep
th

No. of nodes

Multiple Join Request
Single Join Request

Fig. 7. Average tree depth

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1865International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

C. Recovery Time

The recovery time is measured as the time it takes for a
node to rejoin the multicast tree after its parent left the tree.
The average recovery time is the average of the recovery
time of all children of the parent which has left the tree.
As shown in Figure 8, the average recovery time of our
proposal is significantly less than the best recovery time of
the proactive method proposed in [18]. Their lowest average
recovery time is 225ms, whereas ours highest is about 105ms.
As the number of participating nodes in multicast increases,
the average recovery time slightly decreases. One possible
reason may be that as the number of participating nodes
increases, the average distance between two nodes becomes
shorter. So the affected children will have shorter distance to
their grandparent, brothers, parent’s brothers and so on.

 85

 90

 95

 100

 105

 300 600 900 1200 1500 1800 2100

A
ve

ra
ge

 r
ec

ov
er

y
tim

e
(m

s)

No. of nodes

Recovery Time

Fig. 8. Average recovery time

V. RELATED WORKS

There are various fault resilient overlay multicast protocols.
Among them G. Tan et al. [19] have shown by simulation that
their protocol outperforms all others. Their main idea is to
calculate BTP (Bandwidth Time Product) which is defined as
the product of a node’s outbound bandwidth and its age (i.e.
how long it has stayed in the network). Then they compare
BTP of children and their parent node. If there is a child which
has higher BTP than its parent then they switch them over. In
other words, a node with higher BTP is moved slowly up
the tree. The switch operation is performed after a node has
joined and stayed for sometimes in the tree. While switching
they either have to manage the data buffer or data is lost.
Our approach is different from theirs. In our approach, there
is joining overhead for a new joining node, such as number
of join attempts (multiple join request method) or number of
times a join request is forward (single join request method).
However, once a node joins the tree there is no switching or
rearrangement of nodes. Moreover, in our approach we do not
need to manage the data buffer due to joining of new nodes.

In reconstructing mechanism of a overlay multicast tree,
F. Zongming et al. [18] have shown by simulation that their
proposal outperforms all other proposals. Their idea is to solve
a Spanning tree algorithm with available degree of a node as

degree constrain to find parents-to-be nodes for its children.
Our recovery mechanism is much simpler and performs better
than theirs. In our approach, using its family list, each node
locally precalculates which node it will rejoin when its parent
leaves the tree. As soon as it finds that its parent has left the
tree it rejoins at the precalculated node with minimum delay.
However, drawback of our mechanism is that when a node
joins, rejoins or leaves the network this information should be
forwarded to other downward nodes. This drawback is similar
to the one in [18] where a node needs to know other nodes’
available degree to find the parents-to-be nodes.

VI. CONCLUSION

In this paper, we try to improve the fault resilient and
reconstruction of overlay multicast tree for media streaming
using leaving time of participation nodes. Unlike previous
works, the main idea of our proposal is that a node wishing
to join the multicast tree sets its leaving time when sending
join request to nodes in the tree. Using the leaving time of
nodes, they are connected in the tree so that a child’s leaving
time is earlier than its parent’s leaving time so there is no
disruption if nodes leave the multicast tree when their leaving
time arrives. We proposed two methods, single and multiple
join requests, to construct the tree. Though the multiple join
request has less overhead and maximum tree depth, it has to
change its parameter after each unsuccessful attempt to join the
tree where as single join request does have to do so. We also
proposed a proactive reconstruction mechanism in which each
node precalculates which node it will rejoin should its parent
leaves the tree. Our simulation have shown that the overhead
for constructing multicast tree is less and the recovery/rejoin
time for disrupted children is far less than the previous works.
Our future work is how to manage dishonest nodes, i.e. nodes
which set high leaving time and do not stay in the tree until
their leaving time arrives.

REFERENCES

[1] L. Lao, J.-H. Cui, M. Gerla, and S. Chen, “A scalable overlay multicast
architecture for large-scale applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 4, pp. 449–459, 2007.

[2] Y. Zhu, M.-Y. Wu, and W. Shu, “Comparison study and evaluation of
overlay multicast networks,” in Proceedings of the 2003 International
Conference on Multimedia and Expo (ICME ’03), 2003, pp. 493–496.

[3] Y.-h. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast
(keynote address),” in SIGMETRICS ’00: Proceedings of the 2000 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems. New York, NY, USA: ACM, 2000, pp. 1–12.

[4] B. Williamson, Developing IP Multicast Networks Volume I. Cisco
Press, 2000.

[5] L. H. Sahasrabuddhe and B. Mukhergee, “Multicast routing algorithms
and protocols: A tutorial,” IEEE Network, vol. 14, no. 1, pp. 90–102,
Jan/Feb 2000.

[6] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment issues for the ip multicast service and architecture,” IEEE
Network, vol. 14, no. 1, pp. 78–88, Jan/Feb 2000.

[7] S. Birrer and F. E. Bustamante, “A comparison of resilient overlay
multicast approaches,” IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, vol. 25, no. 9, pp. 1695–1705, Dec. 2007.

[8] M. Guo and M. H. Ammar, “Scalable live video streaming to coop-
erative clients using time shifting and video patching,” in Proc. IEEE
INFOCOM 2004. Hong Kong: IEEE, 11 2004, pp. 1501–1511.

[9] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda, “Fatnemo:
Building a resilient multi-source multicast fat-tree,” in Proc. Ninth Int’l
Workshop Web Content Caching and Distribution (WCW 2004). LNCS,
Sept. 2004, pp. 182–196.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1866International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

[10] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in NOSSDAV ’02: Proceedings of the 12th international workshop on
Network and operating systems support for digital audio and video.
New York, NY, USA: ACM, 2002, pp. 177–186.

[11] D. A. Tran, K. A. Hua, and T. T. Do, “A peer-to-peer architecture for
media streaming,” IEEE J. Selected Areas in Comm. (JSAC), vol. 22,
no. 1, pp. 121–133, Jan. 2004.

[12] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” in IMC ’04: Proceedings of the
4th ACM SIGCOMM conference on Internet measurement. New York,
NY, USA: ACM, 2004, pp. 41–54.

[13] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibil-
ity of supporting large-scale live streaming applications with dynamic
application end-points,” in SIGCOMM ’04: Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols
for computer communications. New York, NY, USA: ACM, 2004, pp.
107–120.

[14] M. Bawa, H. Deshpande, and H. Garcia-Molina, “Transience of peers
& streaming media,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1,
pp. 107–112, 2003.

[15] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” SIGMETRICS Perform. Eval. Rev., vol. 31,
no. 1, pp. 102–113, 2003.

[16] Y. Tian, D. Wu, G. Sun, and K.-W. Ng, “Improving stability for peer-to-
peer multicast overlays by active measurements,” J. Syst. Archit., vol. 54,
no. 1-2, pp. 305–323, 2008.

[17] PPLive, <http://www.pplive.com>.
[18] Z. Fei and M. Yang, “A proactive tree recovery mechanism for resilient

overlay multicast,” IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 173–186,
2007.

[19] G. Tan and S. A. Jarvis, “Improving the fault resilience of overlay
multicast for media streaming,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 6, pp. 721–734, 2007.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1867International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

89
8.

pd
f

