Search results for: Erbium-doped fiber laser
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 763

Search results for: Erbium-doped fiber laser

373 Alignment of Emission Gamma Ray Sources with Nai(Ti) Scintillation Detectors by Two Laser Beams to Pre-Operation using Alternating Minimization Technique

Authors: Abbas Ali Mahmood Karwi

Abstract:

Accurate timing alignment and stability is important to maximize the true counts and minimize the random counts in positron emission tomography So signals output from detectors must be centering with the two isotopes to pre-operation and fed signals into four units of pulse-processing units, each unit can accept up to eight inputs. The dual source computed tomography consist two units on the left for 15 detector signals of Cs-137 isotope and two units on the right are for 15 detectors signals of Co-60 isotope. The gamma spectrum consisting of either single or multiple photo peaks. This allows for the use of energy discrimination electronic hardware associated with the data acquisition system to acquire photon counts data with a specific energy, even if poor energy resolution detectors are used. This also helps to avoid counting of the Compton scatter counts especially if a single discrete gamma photo peak is emitted by the source as in the case of Cs-137. In this study the polyenergetic version of the alternating minimization algorithm is applied to the dual energy gamma computed tomography problem.

Keywords: Alignment, Spectrum, Laser, Detectors, Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
372 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V

Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair

Abstract:

Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.

Keywords: Additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
371 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber

Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko

Abstract:

The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.

Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
370 Optical 3D-Surface Reconstruction of Weak Textured Objects Based on an Approach of Disparity Stereo Inspection

Authors: Thomas Kerstein, Martin Laurowski, Philipp Klein, Michael Weyrich, Hubert Roth, Jürgen Wahrburg

Abstract:

Optical 3D measurement of objects is meaningful in numerous industrial applications. In various cases shape acquisition of weak textured objects is essential. Examples are repetition parts made of plastic or ceramic such as housing parts or ceramic bottles as well as agricultural products like tubers. These parts are often conveyed in a wobbling way during the automated optical inspection. Thus, conventional 3D shape acquisition methods like laser scanning might fail. In this paper, a novel approach for acquiring 3D shape of weak textured and moving objects is presented. To facilitate such measurements an active stereo vision system with structured light is proposed. The system consists of multiple camera pairs and auxiliary laser pattern generators. It performs the shape acquisition within one shot and is beneficial for rapid inspection tasks. An experimental setup including hardware and software has been developed and implemented.

Keywords: automated optical inspection, depth from structured light, stereo vision, surface reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
369 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: Carbon, delamination, Kevlar, mode I, nylon, stitching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
368 Experimental Study on Smart Anchor Head

Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee

Abstract:

Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.

Keywords: SHM, prestress force, anchor head, fiber optic sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
367 Reducing Humic Acid and Disinfection By-products in Raw Water using a Bio-activated Carbon Filter

Authors: Wei-Pin Tseng, Jie-Chung Lou, Ming-Ching Wu, Huang-Ming Fang

Abstract:

For stricter drinking water regulations in the future, reducing the humic acid and disinfection byproducts in raw water, namely, trihalomethanes (THMs) and haloacetic acids (HAAs) is worthy for research. To investigate the removal of waterborne organic material using a lab-scale of bio-activated carbon filter under different EBCT, the concentrations of humic acid prepared were 0.01, 0.03, 0.06, 0.12, 0.17, 0.23, and 0.29 mg/L. Then we conducted experiments using a pilot plant with in-field of the serially connected bio-activated carbon filters and hollow fiber membrane processes employed in traditional water purification plants. Results showed under low TOC conditions of humic acid in influent (0.69 to 1.03 mg TOC/L) with an EBCT of 30 min, 40 min, and 50 min, TOC removal rates increases with greater EBCT, attaining about 39 % removal rate. The removal rate of THMs and HAAs by BACF was 54.8 % and 89.0 %, respectively.

Keywords: Bio-activated carbon filter, hollow fiber membrane, humic acid, THMs, HAAs, Water Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
366 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Authors: M. Ishak, K. Yamasaki, K. Maekawa

Abstract:

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
365 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: Coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
364 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468
363 Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Authors: Pil Woo Heo

Abstract:

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Keywords: Concurrently, variable mixed, exhalations, separation, hollow fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
362 Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars

Authors: Khaled S. Ragab, Ahmed S. Eisa

Abstract:

This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3

Keywords: Self compacting concrete, torsion behavior, steel fiber, steel fiber reinforced high strength self compacting concrete (SFRHSCC), GFRP bars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360
361 Effect of Processing Methods on Texture Evolution in AZ31 Mg Alloy Sheet

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Textures of AZ31 Mg alloy sheets were evaluated by using neutron diffraction method in this study. The AZ31 sheets were fabricated either by conventional casting and subsequent hot rolling or strip casting. The effect of warm rolling was investigated using the AZ31 Mg alloy sheet produced by conventional casting. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure of conventionally cast specimen was found to be partially recrystallized structures. Grain refinement was found to occur actively during the warm rolling. The (0002),(10-10) (10-11),and (10-12) complete pole figures were measured using the HANARO FCD (Neutron Four Circle Diffractometer) and ODF were calculated. The major texture of all specimens can be expressed by ND//(0001) fiber texture. Texture of hot rolled specimen showed the strongest fiber component, while that of strip cast sheet seemed to be similar to random distribution.

Keywords: Mg alloy, texture, pole figure, ODF, neutron diffraction, warm rolling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
360 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: Proton exchange membrane fuel cells, electrospinning, carbon nanofiber, activate carbon nanofiber, PVA fiber, pan fiber, carbon nanotube, nanoparticle, nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
359 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: Punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
358 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
357 Theoretical Study on Torsional Strengthening of Multi-cell RC Box Girders

Authors: Abeer A. M., Allawi A. A., Chai H. K.

Abstract:

A new analytical method to predict the torsional capacity and behavior of R.C multi-cell box girders strengthened with carbon fiber reinforced polymer (CFRP) sheets is presented. Modification was done on the Softened Truss Model (STM) in the proposed method; the concrete torsional problem is solved by combining the equilibrium conditions, compatibility conditions and constitutive laws of materials by taking into account the confinement of concrete with CFRP sheets. A specific algorithm is developed to predict the torsional behavior of reinforced concrete multi-cell box girders with or without strengthening by CFRP sheets. Applications of the developed method as an assessment tool to strengthened multicell box girders with CFRP and first analytical example that demonstrate the contribution of the CFRP materials on the torsional response is also included.

Keywords: Carbon fiber reinforced polymer, Concrete torsion, Modified Softened Truss Model, Multi-Cell box girder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4362
356 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers

Authors: Salahaldein Alsadey, Issa Amaish

Abstract:

Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing SFs as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse RA replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of SF-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without SF. Test results revealed that concrete samples incorporating SF exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of SF.

Keywords: Sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
355 Prediction of Watermelon Consumer Acceptability based on Vibration Response Spectrum

Authors: R.Abbaszadeh, A.Rajabipour, M.Delshad, M.J.Mahjub, H.Ahmadi

Abstract:

It is difficult to judge ripeness by outward characteristics such as size or external color. In this paper a nondestructive method was studied to determine watermelon (Crimson Sweet) quality. Responses of samples to excitation vibrations were detected using laser Doppler vibrometry (LDV) technology. Phase shift between input and output vibrations were extracted overall frequency range. First and second were derived using frequency response spectrums. After nondestructive tests, watermelons were sensory evaluated. So the samples were graded in a range of ripeness based on overall acceptability (total desired traits consumers). Regression models were developed to predict quality using obtained results and sample mass. The determination coefficients of the calibration and cross validation models were 0.89 and 0.71 respectively. This study demonstrated feasibility of information which is derived vibration response curves for predicting fruit quality. The vibration response of watermelon using the LDV method is measured without direct contact; it is accurate and timely, which could result in significant advantage for classifying watermelons based on consumer opinions.

Keywords: Laser Doppler vibrometry, Phase shift, Overallacceptability, Regression model , Resonance frequency, Watermelon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
354 A Novel Feedback-Based Integrated FiWi Networks Architecture by Centralized Interlink-ONU Communication

Authors: Noman Khan, B. S. Chowdhry, A.Q.K Rajput

Abstract:

Integrated fiber-wireless (FiWi) access networks are a viable solution that can deliver the high profile quadruple play services. Passive optical networks (PON) networks integrated with wireless access networks provide ubiquitous characteristics for high bandwidth applications. Operation of PON improves by employing a variety of multiplexing techniques. One of it is time division/wavelength division multiplexed (TDM/WDM) architecture that improves the performance of optical-wireless access networks. This paper proposes a novel feedback-based TDM/WDM-PON architecture and introduces a model of integrated PON-FiWi networks. Feedback-based link architecture is an efficient solution to improves the performance of optical-line-terminal (OLT) and interlink optical-network-units (ONUs) communication. Furthermore, the feedback-based WDM/TDM-PON architecture is compared with existing architectures in terms of capacity of network throughput.

Keywords: Fiber-wireless (FiWi), Passive Optical Network (PON), TDM/WDM architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
353 Corporate Social Responsibility Practices of the Textile Firms Quoted in Istanbul Stock Exchange

Authors: Gulsevim Yumuk Gunay, Suleyman Gokhan Gunay

Abstract:

Corporate social responsibility (CSR) can be defined as the management of social, environmental, economical and ethical concepts and firms sensivities to the expectations of the social stakeholders. CSR is seen as an important competitive advantage in the textile sector because this sector has an important impact on the environment and it is labor extensive. Textile sector has a strong advantage when compared with other sectors in Turkey due to its low labor costs and abundancy of raw materials. Turkey was a producer and an exporter of cotton, and an importer of fiber, clothes and dresses until 1950s. After 1950s, Turkey has begun to export fiber, ready-made clothes and become one of the most important textile producers in the world recently. CSR practices of the textile firms that are quoted in Istanbul Stock Exchange and these firms sensivities to their internal and external stakeholders and environment will be presented in this study.

Keywords: corporate social responsibility, Istanbul Stock Exchange, textile sector, Turkey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
352 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

Authors: A. Kurşun, M. Tunay Çetin, E. Çetin, H. Aykul

Abstract:

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene are put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Keywords: Cantilever beam, elastic stress analysis, orientation angle, thermoplastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4257
351 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsorbents of natural origin including sawdust (shisham), coconut fiber, neem bark, chitin, activated charcoal. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant Kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: Acenaphthene, anthracene, biphenyl, Coconut fiber, naphthalene, natural adsorbent, PAHs, TPO and wood powder (shisham).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4052
350 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
349 An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches

Authors: A. Pourkamali Anaraki, G. H. Payganeh, F. Ashena ghasemi, A. Fallah

Abstract:

Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.

Keywords: Crack, Composite patch repair, Fiber metal laminate (FML), Patch Lay-up, Repair surface, Ultimate load

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
348 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: Composite material, Fiber metal laminate, Lightweight construction, Prepreg press technology, Large-series production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
347 Chemical and Sensorial Evaluation of a Newly Developed Bean Jam

Authors: Raquel P. F. Guiné, Ana R. B. Figueiredo, Paula M. R. Correia, Fernando J. Gonçalves

Abstract:

The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g.

Keywords: Bean jam, chemical composition, sensorial analysis, product acceptability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
346 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of Laser in the Liquid Argon Time Projection Chamber.

The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432pb.

The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, Particle Physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
345 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites

Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh

Abstract:

Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physicochemical properties in the long term. The aim of this work is to study the photooxidation of unidirectional (UD) composites based on recycled matrix. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.

Keywords: Flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
344 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739