Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094251
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3474References:
[1] L. Ulich, P. Fairley, "Carbon car
[2013 Tech To Watch]”, IEEE Spect., vol. 50, pp.30-31, 2013.
[2] C.D Rudd, A.C Long, K N Kendall, C. Mangin, Liquid molding technologies, CRC Press, Woodhead Pub.: Cambridge, UK, 1997, pp.12-27.
[3] A.C. Long, Composite forming technologies, CRC Press, Woodhead Pub.: Cambridge, UK, 2007, pp.256-276.
[4] S.B. Sharma, M.P.F. Sutcliffe, "A simplified finite element model for draping of woven material”,Compos. Part A: Appl. Sci. Manuf., vol.35, pp.637–643, 2004.
[5] A.A. Skordos, C.M. Aceves, M.P.F. Sutcliffe, "A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites”, Compos. Part A: Appl. Sci. Manuf., vol.38, pp.1318-1330, 2007.
[6] Y. Aimene, B. Hagege, F. Sidoroff, E. Vidal-Salle, P. Boisse, S. Dridi, "Hyperelastic approach for composite reinforcement forming simulations”, Int. J. Mater. Form.,vol.1, pp.811-814, 2011.
[7] M. Nishi, T. Hirashima, "Approach for dry textile composite forming simulation”, in Proc.19th Int. Conf. Compos. Mat., Canada, 2013.
[8] M. Nishi, T. Hirashima, T. Kurashiki, "Textile composite reinforcement forming analysis considering out-of-plane bending stiffness and tension dependent in-plane shear behavior”, in Proc. 16thEur. Conf. Compos. Mat., Spain, 2014.
[9] P. Wang, N. Hamila, P. Boisse, "Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix”,Compos. Part B: Eng., vol.52, pp.127–136, 2013.
[10] S.P. Haanappel, R.H.W. ten Thije, U. Sachsa, B. Rietman, R. Akkerman, "Formability analyses of uni-directional and textile reinforced thermoplastics”, Compos. Part A: Appl. Sci. Manuf., vol.56, pp.80-92, 2014.
[11] Q. Chen, P. Boisse, C.H. Park, A. Saouab, J. Breard, "Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes”,Compos. Struct.,vol.93, pp.1692-1703, 2011.
[12] P. Boisse, B. Zouari, J.L. Daniel, "Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming”,Compos. Part A: Appl. Sci. Manuf., vol.37, pp.2201-2212, 2006.
[13] D. Hull, T.W. Clyne, An Introduction to Composite Materials, Cambridge University Press: New York, 1996, pp.60-77.
[14] I. Ivanov, A. Tabiei, "Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations”,Int. J. Numer. Methods Eng., vol.61, pp.1565-1583, 2004.
[15] P. Harrison, M.J. Clifford, A.C. Long, C.D. Rudd,”A constituent-based predictive approach to modelling the rheology of viscous textile composites”, Compos. Part A: Appl. Sci. Manuf., vol.35, pp.915-931, 2004.
[16] J. Launay, G. Hivet, A.V. Duong, P. Boisse, "Experimental analysis of the influence of tensions on in plane shear behavior of woven composite reinforcements”, Compos. Sci. Technol., vol.68, pp.506–515, 2008.
[17] P. Harrison, M.J. Clifford, A.C. Long, "Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments”, Compos. Sci. Technol., vol.64, pp.1453–1465, 2004.
[18] J.O. Hallquist, LS-DYNA Theory Manual, ISBN 0-9778540-0-0, 2006.
[19] CAMPUS, Available: http://www.campusplastics.com/campus
[20] Molex3D,Available: http://www.moldex3d.com/en/
[21] Digimat, Available: http://www.e-xstream.com/en/index.html.